C and its Offspring: OpenGL and OpenCL — Part 2 of 2, by Dr Sean Harmer KDAB AB
First Published in RTC Magazine, November 2015

C and its Offspring: OpenGL and OpenCL

By Dr Sean Harmer

Part 2

Feeding the Pipeline

The previous section has explained how the flow of data through the pipeline transforms from
vertices, through fragments and eventually, for the lucky few, to pixels on the screen. Of
course, modern GPUs are very good at doing this but only if we treat them the right way. The
programmable shader-based stages of the pipeline give us a huge amount of flexibility but we
also need to feed the pipeline with a steady stream of data so as to not allow it to stall.

In addition to flexibility, it is the desire for greater performance that has shaped the OpenGL
APl in recent times. Legacy OpenGL that you may have seen with its copious calls to
glVertex3f() and friends are just not a good way of getting data into the pipeline. OpenGL'’s
threading model means that all rendering commands for a particular pipeline must be issued
from the same thread. One CPU core is simply not fast enough to feed data one vertex attribute
at a time and keep the GPU fully loaded. Laughably far from it.

ce) il ite) L)

e

Db nnn =

Texture Coordinates

N—— e N e N e N —

D

LEEERE

= = = =

Vertex 0 Vertex 1 Vertex 2 Vertex 3

FIGURE 1: OPENGL PERFORMS BEST WHEN WORKING ON LARGE CONTIGUOUS BLOCKS OF MEMORY STORED IN BUFFER
OBJECTS. FOR TYPICAL GEOMETRY SUCH DATA CONSISTS OF VERTEX POSITIONS THAT GIVE THE ACTUAL GEOMETRIC SHAPE OF

C and its Offspring: OpenGL and OpenCL — Part 2 of 2, by Dr Sean Harmer KDAB AB
First Published in RTC Magazine, November 2015

THE MESH TO BE RENDERED; A NORMAL VECTORAT EACH VERTEX THAT FEEDS INTO THE LIGHTING CALCULATIONS IMPLEMENTED
IN THE PROGRAMMABLE SHADER STAGES OF THE PIPELINE; AND TEXTURE COORDINATES USED TO MAP IMAGES ONTO THE
SURFACE OF THE 3D MESHES BEING DISPLAYED. THIS DIAGRAM ILLUSTRATES ONE POSSIBLE CONFIGURATION IN WHICH THE
DATA CAN BE ARRANGED INTO MULTIPLE BUFFER OBJECTS. OTHER, MORE COMPLEX ARRANGEMENTS ARE POSSIBLE THAT GIVE
BETTER PERFORMANCE AS A RESULT OF IMPROVED CACHE COHERENCY. IT IS NECESSARY TO TELL OPENGL ABOUT THE FORMAT
OF THE DATA SO THAT IT KNOWS HOW MUCH DATA TO FEED INTO THE PIPELINE FOR EACH VERTEX.

Consequently, OpenGL now requires us to package up the input data (vertex positions and
other attributes) into relatively large packages with a well-defined (but user specifiable) format.
Figure 1 shows one possible ways of arranging typical vertex data (positions, normal vectors
and texture coordinates) into buffer objects. The buffer objects that contain our vertex
attribute data can be associated with the inputs to a vertex shader with a few commands on
the CPU (glVertexAttribPointer() and friends). If we tell OpenGL how the data in our buffers will
be used and how often it is likely to be updated, the OpenGL driver may be nice and DMA the
buffer of data such that it resides in nice and fast GPU-side memory (if your GPU and CPU don’t
have a shared memory architecture).

The upshot of this is that with minimal CPU overhead® we can get everything needed by the
GPU lined up and ready to go prior to issuing a draw call. Think of issuing an OpenGL draw call
such as glDrawElements(), as simply pulling the trigger on a starter’s pistol. The draw call
returns immediately and the CPU is free to get on with other work (queueing up additional
OpenGL work or anything else) whilst the GPU asynchronously gets on with the work described
in the previous section.

Maintaining this degree of parallelism between the CPU and GPU is key to maintaining good
performance in OpenGL.

OpenGL Without the Triangles

Newer versions of OpenGL (OpenGL 4.3 or OpenGL ES 3.1) introduce a second pipeline in

addition to the graphics rasterization one we have been discussing up to now. This second
pipeline is very simple and consists of a single programmable shader stage — the compute
shader.

What is the compute shader and what is it good for, | hear you ask? Well, a compute shader is
written in GLSL just like its graphical counterparts, and it is useful when you want to perform
general purpose computations that do not directly involve rasterizing primitives. Ideally, to take
full advantage of the GPU’s parallelism, the algorithms that you code up into compute shaders
should be nicely parallelizable in terms of the data they operate on and have no (or very few)
dependencies between blocks of work.

! Minimal for OpenGL anyway. Vulkan and other explicit APIs offer even better approaches due to newer threading
models.

C and its Offspring: OpenGL and OpenCL — Part 2 of 2, by Dr Sean Harmer KDAB AB
First Published in RTC Magazine, November 2015

But when should we use compute shaders instead of OpenCL? The functionality exposed by
compute shaders in OpenGL is not as full featured as the facilities offered by OpenCL, Cuda and
other similar APls. However, OpenGL’s compute feature does have one major advantage: there
is no very expensive context switch required when switching between OpenGL graphics and
compute pipelines as there is when switching between OpenGL and OpenCL or Cuda and back
again.

The upshot of these conditions is that OpenGL’s compute shaders often find very good use for
processing data that is close to the graphics. For example, performing physics particle
simulations by updating the contents of a buffer containing particle positions and velocities or
convolving texture data with a kernel ready to be displayed in a subsequent graphics pipeline
pass. If your needs exceed that of OpenGL compute shaders, then you will need to look
elsewhere and use an interoperability API if you then need to render the results of the
calculations performed. We do not have space here to do justice to OpenCL but there are some
fantastic online resources available such as https://handsonopencl.github.io/.

Using OpenGL in Practice

OpenGL is very often the go-to API of choice when you want fluidly animated user interfaces, or
need to display large quantities of data, or as often found?, both. OpenGL cannot be used in
isolation to write an entire application. OpenGL knows nothing of window surfaces, input
devices, and the raft of other tasks an application has to complete. The process of obtaining a
window surface on which to draw and an OpenGL context (that holds the current OpenGL
state) requires the use of platform-specific APIs such as EGL, WGL, GLX, CGL etc. Alternatively,
one can use a cross-platform toolkit such as Qt* that abstracts these things away nicely allowing
you to concentrate more on the task at hand.

Once you have performed the mundane tasks of obtaining a window and context, you can set
to with your fancy shader based pipelines and big buffers of data to render your masterpiece at
60 fps. More likely, you will find yourself staring at a black screen because you made a subtle
mistake in one® of a hundred possible ways that means you don’t see what you hoped. Some
classic examples of mistakes (all of which | have made at various times) are: transforming the
object you want to see so that it is behind the virtual camera; putting the camera inside the
object and disabling rasterization of the back faces of triangles; drawing a quad exactly edge on;
incorrectly transforming vertices in your vertex shader; using an incomplete texture object
(gives black object on a black background) and many more.

% At least in the projects KDAB is often asked to complete.
® http://www.qt.io/
“If you’re lucky it’s only one problem. In reality there are often multiple issues to resolve.

C and its Offspring: OpenGL and OpenCL — Part 2 of 2, by Dr Sean Harmer KDAB AB
First Published in RTC Magazine, November 2015

To avoid repeating many of these mistakes time and again, developers either end up writing
their own set of wrappers and utilities to help manage the large amounts of data and concepts
or they use an existing framework. There are many such frameworks, often referred to as scene
graphs available, both open source and commercial. Take your pick of the one that suits you
best. However, you still need a good mental model of what the OpenGL pipeline is doing under
the hood and who knows when you’ll need to tweak that shader that ships out of the box but
doesn’t quite do what you need.

Qt once again shines here. The Qt3D module is currently undergoing rapid development and
allows both C++ and QML APIs to create and manage your scene graph. Moreover, Qt3D also
allows you to specify exactly how the scene graph is processed and rendered by the backend.
This allows you, for example, to completely switch the rendering algorithm dynamically at
runtime — when transitioning from an outdoor to an indoor scene for example. Qt3D is also
extensible to a great degree, and the future will bring features such as collision detection, Al,
3D positional audio and much more.

Jet Engine Controls Engine Maintenance
Engine Thrust. Exploded View

Open Left Fan Cowl Open Right Fan Cowl

Open Left Reverser Cowl Open Right Reverser Cowl

Engine Inspection
Enable Clipping
View Mode Show Clipping Planes
single View X (Y2)
B 3 Views (small) Shading - . Y (X2)
3Views (large) () Phong Shading Mo Z(x)

Part Explorer Gooch Shading Z Rotation

FIGURE 2: EXAMPLE OF AN APPLICATION WRITTEN WITH QT3D SHOWING OFF THE POWER OF OPENGL. THE QT3D
FRAMEWORK ALLOWS A MUCH HIGHER LEVEL OF ABSTRACTION THAT USING RAW OPENGL BUT STILL PROVIDES A POWERFUL
FEATURE SET. IN THIS SCENE WE CAN SEE A MODEL OF A JET ENGINE BEING RENDERED FROM 3 SEPARATE CAMERA POSITIONS
INTO 3 REGIONS OF THE WINDOW. THE ENGINE AND STAND USE A VARIETY OF MATERIALS AND TEXTURES TO GET THE DESIRED
SURFACE FINISHES. CUT PLANES ARE IMPLEMENTED WITH SOME CUSTOM GLSL SHADERS TO SELECTIVELY ALLOW SEEING THE
INTERNAL STRUCTURE OF THE ENGINE. THE BACKGROUND IS SMOOTHLY ANIMATED TO VARY SLOWLY OVER TIME AND THE 2D
USER INTERFACE IS PROVIDED BY QT QUICK AND BLENDED OVER TOP OF THE 3D CONTENT INCLUDING REAL TIME TRANSPARENT
PANELS.

C and its Offspring: OpenGL and OpenCL — Part 2 of 2, by Dr Sean Harmer KDAB AB
First Published in RTC Magazine, November 2015

Finally, you need to consider how to composite your OpenGL scene with a traditional 2D user
interface and any other data such as camera feeds, video streams, 3" party mapping
frameworks etc. As described in the May 2015 issue of RTC®, Qt provides the Qt Quick UX
technology stack. It just so happens® that Qt Quick is rendered using OpenGL (by way of a scene
graph that specializes in 2D content). Qt Quick also supports camera and video data and is
relatively easy to integrate with mapping engines too. Of course Qt Quick and Qt3D work
seamlessly together and allow the creation of stunning user interfaces that combine 2D and 3D
aspects. Figure 2 shows an example of Qt3D and Qt Quick in action together running at 60 fps.

The Future

Over time, more facilities have been added to OpenGL to get even better performance.
Features such as primitive restart, instanced rendering, array textures, and indirect rendering
allow a single draw call to trigger far more work than was possible without them — this is often
referred to as increasing the batch size.

However, whilst maintaining backwards compatibility there is one problem that cannot be
solved in OpenGL. It’s a big one’. The threading model. OpenGL originates from a time of
processors with single cores and this reflects in its architecture. All OpenGL commands for the
current context have to be issued from the thread on which the context is current. This means
that on modern machines the CPU often has N-1 cores idling whilst they wait for the core
driving the OpenGL context to complete its work each frame.

To solve this a new approach is needed. Vulkan is the answer to this from Khronos. Vulkan is a
new API designed from the ground up to eliminate the problems with OpenGL. It features a
threading model that allows multiple CPU cores to build up command buffers that can later be
issued to the GPU. Potentially such command buffers can be reused multiple times, even across
frames, saving the CPU even more workload in situations that exhibit a high degree of temporal
coherency.

Additionally, Vulkan is also an explicit API. The application (you) is responsible for managing
every aspect of the resources used by the pipeline. This minimizes surprises that can sometimes
be present in OpenGL when certain commands take far longer than expected due to the driver
having to do book keeping behind the scenes.

The advent of Vulkan does not spell the end for OpenGL by any means. OpenGlL is still perfectly
capable of driving the vast majority of use cases encountered today. Vulkan will allow

> Embedded's Gone Cute: http://rtcmagazine.com/articles/view/110543, by Rafael Roquetto.

® Of course it didn’t “just” happen, Qt was designed this way.

T you’re really trying to extract every last piece of performance from your GPU or to keep within a thermal
envelope.

C and its Offspring: OpenGL and OpenCL — Part 2 of 2, by Dr Sean Harmer KDAB AB
First Published in RTC Magazine, November 2015

developers to scale the graphical aspects of their applications horizontally across multiple CPU
cores. This is most beneficial at present for high-end game engines on the desktop but also for
mobile and embedded devices wishing to get better use of the limited thermal envelopes
and/or battery life. Although the API of Vulkan is necessarily different to OpenGL, the concepts
are very much the same. So if you have never touched OpenGL before, investing into learning it
now will not be lost even if you wish to migrate to Vulkan in the future.

Hopefully this article has shed a little light on some of the concepts involved with using modern
OpenGL. Of course there is far more to it than we can hope to cover in a few pages. The good
news is that all of the sophisticated lighting models, texturing methods, tessellation and
geometry processing all build upon the same core principals.

If all of this still seems a little daunting there are plenty of resources available to help you on
your way. The official OpenGL wiki® is a great place to start and the OpenGL man pages are very
thorough. In addition to consulting services, KDAB also offers professional 3-5 day training
courses that can help explain the concepts, demonstrate the techniques that build upon them
and arm you with everything needed to be productive with OpenGL. We even include around
100 examples and hands-on exercises to cut your teeth on. See
http://www.kdab.com/training/courses-curricula/modern-opengl/ for full details.

About the Author: Dr. Sean Harmer, KDAB

Dr Sean Harmer is a Senior Engineer and Director at KDAB. He has been developing with
C++ and Qt since 1998, and in a commercial setting since 2002.

Sean holds a PhD in Astrophysics along with a Masters in Mathematics and Astrophysics.
He has a broad range of experience and is keenly interested in scientific visualisation
and animation using Qt and OpenGL.

Sean is the maintainer of the Qt3D module and an experienced trainer in OpenGL and
Qt. He lives in the north of England and enjoys drinking tea.

http://www.kdab.com/about/contact/

® https://www.opengl.org/wiki

