
KDAB — the Qt, OpenGL and C++ experts 1

Containers
Cloud tech comes to embedded

Till Adam | Chief Commercial Officer
Sven Knebel | Software Engineer

Containerization is starting to appear
in embedded, but it is definitely not yet
commonplace.

KDAB — the Qt, OpenGL and C++ experts

Containers in embedded

Software developed for embedded applications is often distinct from
its desktop and cloud cousins due to the constraints of embedded
hardware and the integration of non-mainstream devices. But prob-
lem-solving technologies developed in other places tend to migrate
to embedded systems once the hardware catches up. Containers are
one of these – and they’re not just for cloud developers anymore.

While containerization is starting to appear in embedded, it is defi-
nitely not yet commonplace. At KDAB, we see the increasing interest
in embedded containers come with a host of questions. What exactly
are they, are they the right fit for my product, what advantages do
they bring, what are the disadvantages, and are those disadvantages
something we can live with?

This white paper provides a general overview of containers in embed-
ded from our own knowledge, research, and experience, as well as
that from our partner Toradex, a hardware vendor that is also an
expert in embedded containers. Hopefully it will help you answer if
now is the right time to add this technology to your embedded tool
chest.

What is a container?

Containers are sometimes called “packaging abstractions” since
they can wrap up a program along with all its dependences (binary
executables, libraries, configuration files, etc) into a single, isolated
executable environment. Although this description is true, it doesn’t
communicate the true value of the technology.

People also often compare containers to lightweight virtual machines
(VMs). This underscores one of the main use cases of containers:
isolating multiple applications running on the same machine. While
that description feels close to how containers are used in practice, it
fails to deliver the right architectural sense. VMs are associated with
hypervisors, full OS stacks, hard disk images, virtualized devices, and
hardware-dependent isolation, all things a container doesn’t have.

2

Containers don’t require
anywhere near as much disk

space as VM images; this
is handy on the developer
workstation but critical on

the embedded target.

Containers have a lot of similarities to
VMs without the comparatively heavy
drain on resources, ideal for embedded.

KDAB — the Qt, OpenGL and C++ experts

A more appropriate analogue would be comparing a container to a
super-powered chroot since a container bundles an application with
all of the filesystem pieces it needs to operate. In other words, all the
libraries, utilities, data, and configuration files that the app depends
on during runtime. This part is like chroot – or a BSD jail, which is in
fact the original genesis of the concept. In addition to the filesystem
part, the container also gives the bundle dedicated namespace, mem-
ory, and networking views, insulating it from the rest of the system.
This is the container’s “superpower”, and it’s reliant on Linux name-
space technology. (Although containers can operate on Windows too,
Linux containers are much more common especially in embedded
applications, and throughout this paper we’ll be describing containers
in Linux terms.)

3

What is chroot?

A shortened form of “change root”, chroot changes the top-level root directory for a specified
process to be somewhere else in the directory tree. The ancestor of today’s containers, chroot
originally comes from Unix and allows the system to restrict the process to a limited subset of
the computer’s file system. This prevents the process from being able to tamper with unrelated
files even if it has (or is given) elevated privileges. This technique was commonly employed with
applications such as web browsers, so that hackers would do limited damage if they exploited
a vulnerability.

Benefits of containers

Containers have a lot of similarities to VMs without a comparatively
heavy drain on resources, which is ideal from an embedded point-of-
view. What are some practical benefits of this technology in day-to-
day use?

Containers can be used to great effect in
development environments, even if they
are never deployed on targets.

KDAB — the Qt, OpenGL and C++ experts 4

There are many ways to
use containers in

development,
testing, deployment, and

cybersecurity.

In development

Although containers can be used on the embedded target (as we
discuss later), embedded developers can also use them to great effect
even if the containers are only used within the development envi-
ronment and are never deployed on the target hardware. Here are
several ways they’re useful.

Guaranteed toolkits. Developers can place their development tools
into a container, which allows them to use tools on multiple platforms
without an installation. This helps ensure all team members are using
the exact same tools and build environment. It also makes it trivial to
spin up a new development environment for new developers or new
machines. And it can guarantee that the build server is always using
the same tools as the development team.

Different tool chains. Separate containers can hold different vari-
ants of a tool chain. This lets developers test an application against
multiple tool chains without worrying about how those tool chains
can co-exist, or whether they’re installed correctly. It allows develop-
ers to tinker with experimental software in a controlled way without
polluting their development environment. And developers can make
software patches against an older version of tools when the mainline
development has already moved to a later release.

Multistage containers. With multistage containers, developers can
create a container structure that layers the development environ-
ment on top of the production environment. That way, all of the tools
that developers rely on to create software are stripped out safely
without impacting the production build.

Complete snapshot. Because containers are easily versioned, it’s
easier to snapshot the entire runtime environment for branches,
forks, and releases. This tight control also helps when certifying
software, allowing external auditors to identify exactly what software
and libraries are in use.

Namespaces are the Linux technology
that container software uses
to implement process isolation.

KDAB — the Qt, OpenGL and C++ experts 5

Distributed deployment. It’s easier to build complex distributed sys-
tems with containers since they support modular software building
and deployment. This is becoming especially important in IoT, indus-
trial, and automation applications, where you need to orchestrate
many different components over a long period of time at scale.

The power behind containers: namespaces

Namespaces are the Linux technology that
container software uses to implement
process isolation. They provide the ability to
control which resources an application can
see and how they appear. These resources
are divided into different domains; here are
some of the most common.

mnt – mount points of the namespace; in
other words, the process’ view of the file
system. Mounts give the container the ability
to use its own files (from the host system) or
share files between containers

pid – process IDs (PIDs), independent for
each container. The pid namespace follows
the same behavior as Linux in general, such
as the first process within the namespace

is assigned a PID of 1 and terminating this
process will end all other processes within the
namespace

net – a virtualized network stack that has its
own devices, IP addresses, routing, firewall,
sockets, etc. The network resources within a
namespace may be redirected back to net-
work resources within the parent namespace

ipc – inter process communication, such as
messages, semaphores, or shared memory,
letting processes in different namespaces use
the same names for objects without having
them collide at a system level

user – the creation of independent non-con-
flicting user ids for each name space

With targets

Using containers on an embedded target provides additional benefits
beyond the development sphere.

Containers make it much easier to develop software that’s hardware
independent, minimizing the pain of switching between hardware

Containers broaden the embedded
development talent pool by allowing
developers to use a system right away.

KDAB — the Qt, OpenGL and C++ experts 6

platforms or hardware vendors. This hardware flexibility supports
a development workflow and configuration management system
that’s needed to deliver multiple product variants or scalable product
families from a single code base.

There are other benefits too. Placing the target environment into a
container helps with provisioning. With a container, the setup of a
fresh target environment becomes much faster than provisioning a
raw target and much more reliable than cleaning off a target that has
already been used. And with proper configuration, container behavior
differences between the development and embedded systems can
be minimized. This allows much of the development to proceed even
in the absence of target hardware. The software team then becomes
less dependent on sufficient hardware availability or affected by
delays in hardware-production timing.

Containers also help broaden the talent pool necessary for embed-
ded development. Rather than requiring a lot of complex configura-
tion procedures to bring up an embedded target, a pre-containerized
target makes it possible for nearly any developer to start using an
embedded system right away. While arguably that might also be true
for any hardware vendor who’s provided a sufficiently complete and
well-documented BSP, containers can provide a consistent interface
between vendors that’s also well-understood outside the embedded
space. That means that cloud and web developers who are moving
into the embedded space and already have experience with contain-
ers can easily bring up a target that’s out-of-the-box. Containers can
open up embedded and IoT programming to a whole new talent pool
and partially side-step the need for specialized hardware bring-up
expertise.

In testing

Container start up is fast enough to allow a new container to be spun
up for each test, making test reproducibility much more reliable and
consistent. They are also lightweight enough to allow several contain-
ers running at the same time for parallel test sessions.

Containers make it easier
to ramp up in embedded

development,
making it possible to

expand your team with web
and cloud developers.

The hardware vendor can provide quick
patches and support new hardware
while the application remains stable.

KDAB — the Qt, OpenGL and C++ experts 7

Containers
aren’t a security

panacea, but
they do help to

additionally
insulate your
product from

attackers.

With containers shared between a development machine and embed-
ded target, some tests can be run on the faster development host
instead of the slower embedded target. And for applications that
need to talk between peers, clients, and servers, a container supports
the creation of multiple nodes within a virtual network on the same
machine, drastically simplifying the creation of a test environment.

In deployment

Containers allow application development to be decoupled from the
hardware vendor’s Linux stack. That is, the hardware vendor uses
a Yocto base system while the application developer implements a
container-based environment on top. This lets a hardware vendor
provide quick patches and support new hardware while the applica-
tion remains stable and unperturbed, even when the release cycles of
the two sides are mismatched (as they often are). Eliminating issues
caused by swapping out the application’s underlying OS and drivers
helps ensure that products will get the latest security updates, bug
fixes, and performance improvements.

Updating containers with an OTA (over-the-air) solution takes advan-
tage of an already modular architecture and can provide software
updates with very little disruption to the underlying application.

For security

Containers provide an additional layer of protection for applications
and services, making it even harder for hackers to misuse the under-
lying system or other applications. For one, containers can be signed
so that unsigned containers (which are untrusted) can be prevented
from running. They enable modular updates to system components,
making it easier to keep security-critical software updated without
interfering with the application. They also decrease the attack surface
exposed by an application, which helps reduce the risk of vulnerabili-
ties being exploited.

Architecting with containers

All these benefits are great, but how do you actually build an embed-
ded application using a container? There are at least three common

Breaking the application into indepen-
dent containers can help insulate it
from internal dependencies.

KDAB — the Qt, OpenGL and C++ experts 8

Headless embedded
systems or those with

specialized displays are a
good fit because there’s
no need to share the UI

framework and the screen
between containers.

approaches, depending on the requirements of your embedded
device and whether you’re starting from scratch or have an existing
code base.

Headless. Headless and IoT edge devices don’t need a display and
are very easy to containerize. They’re already similar in many ways
to cloud or web applications and in fact may use web services to
communicate, making them a natural fit. A containerized application
will still probably need to access sensors, peripherals, or other hard-
ware on the embedded device. This will require an embedded-savvy
container environment, since you’re very unlikely to see web or cloud
containers that are able to write to hardware.

Monolithic. A monolithic container encapsulates the embedded
application into a single container for use on a target. This is often
the case for devices that have a display and need to run a graphical
framework such as Qt. However, the structure of the container itself
is very basic; this is probably where most people with existing embed-
ded applications would start.

Microservices. By decomposing the embedded software into
microservices, each independent service can be placed into its own
container. This is a very modular approach, and it allows changes to
modules individually without impacting the rest of the application. (In
this model, external access could be provided by a web server that
can host browser-based apps for remote access.)

Even if you don’t believe the microservice model lives up to its hype,
breaking the embedded application into independently containerized
components can help insulate the application from its internal depen-
dencies. For example, placing a third-party binary into a separate
container can allow the rest of the system to be updated without
breaking the app when the binary is static and cannot be changed.
Similarly, any component with a different update cadence that your
application requires (like partner apps, open source libraries, or
protocol stacks) can be containerized with the precise version of the
libraries, frameworks, and languages it has been tested against.

You get a lot of bang for the buck in
provisioning, versioning, testing, and
building, making your team more
effective.

KDAB — the Qt, OpenGL and C++ experts 9

You’re not going to
containerize microcontrol-
lers and deeply embedded

applications; you need a
32-bit memory-protected

version of Linux at a
minimum.

When not to use containers

With all of these positive attributes, are there any downsides to using
containers for embedded development?

If we’re looking exclusively on developer, build, and QA machines,
there seems to be little reason not to use containers. You get a lot of
bang for the buck in provisioning, versioning, testing, and building,
and once you’re past the relatively quick learning curve, you can make
your entire team more effective and your results more reproducible.

What about using containers on an embedded target?

Clearly, you’ll never see containers in deeply embedded applications
where the target has an 8- or 16-bit processor, less than 1MB RAM, or
is incapable of running Linux. But for the rest of SOCs that are 32-bit,
understanding exactly where and when you might deploy a target
with containers is a more nuanced question. Our recommendation
would be to start by incorporating containers in your normal devel-
opment workflow. Once you’ve accumulated some expertise in them,
you’ll be better able to recognize if they’re viable for your project.
Your team will also have acquired the skills necessary to deploy them
successfully in an embedded context.

How are a container and a virtual machine different?

Few embedded developers would consider using a full VM on tar-
get hardware boards – they are rarely powerful enough. However,
because many engineers are familiar with VMs through other devel-
opment work, they can provide a useful comparative technology for
understanding containers in more detail.

Specifically, this comparison can help you start developing the criteria
needed to understand whether containers are right for your embed-
ded target. By examining a few key areas where these technologies
differ, you can get an idea of where and why containers may be
sufficiently efficient to use in embedded applications.

Each container has its own files, which
can be transparently mixed with files
from shared volumes and host folders.

KDAB — the Qt, OpenGL and C++ experts 10

Containers Virtual machines (VMs)
Architecture •	 Containers are application-centric

•	 OS-level virtualization is achieved through
user-space abstractions and namespace
isolation

•	 Hypervisors are unnecessary; container
services use OS features

•	 VMs are hardware-centric

•	 The guest machine is emulated
with a complete stack of virtualized
hardware

•	 Hardware assistance and/or hyper-
visors are required

Operating
system (OS)

•	 The OS and kernel are shared between all
applications and the host OS

•	 It’s possible to host a unique OS
(Windows IoT, Linux, QNX, etc) in
each VM

File system •	 Each container has its own files, which
can be transparently mixed with files from
shared volumes and host folders

•	 Containers have more flexibility on how
their files are managed

•	 VM filesystems reside completely
within VM images

•	 VMs can only access their host’s files
through virtual networks and server
apps

•	 VM filesystems do not have to be
the same as host filesystems

Memory •	 Memory consumption for containers
is nearly the same as for standard
applications

•	 App memory allocations come directly from
operating systems

•	 Containers can use any available memory
or be constrained

•	 Containers share read-only portions, so
running multiple containers only pays a
one-time hit on largest RAM use

•	 VMs contain entire OS memory
layouts so their memory consump-
tion is much more than single
applications

•	 App memory allocations come from
the VM OS, which requests pages
from the host OS (or are reserved by
the host OS)

•	 VM memory use is generally fixed
and instantiated for each VM

Start-up time •	 Since the OS is already booted, only con-
tainer initialization is required, generally
taking much less time

•	 A full OS boot is required; optimiz-
ing this takes additional work but
regardless is generally longer

Image size •	 Containers are generally smaller than VMs •	 VMs are generally larger than
containers

Containers are designed for easy
versioning of images with built in
version management.

KDAB — the Qt, OpenGL and C++ experts 11

Embedded container products

Lots of companies are providing container solutions that will work in
embedded systems. For starters companies like ARM, Daynix, Docker,
Mentor, Toradex, Windriver, and Xilinx are investing in the technol-
ogy. We’ll take a quick look at a couple of the more notable ones here,
but as products and features are constantly being updated, it’s always
best to check with the manufacturer for specifics.

Docker

This is the granddaddy of all container companies. As docker is the
first and most comprehensive container (and it’s open source), it
forms the core of most implementations. If you’re putting a container
on your system, you’re almost certainly going to have to learn the
ins and outs of the docker command and common development
patterns. You might also want to look at a quick “getting started with
docker on ARM” guide.

Containers Virtual machines (VMs)

Layering/
versioning

•	 Containers can be built from multiple layers
(called multistage builds), allowing for clean
isolation of developer and production
environments, environment portability, and
other build configurations

•	 Designed for easy versioning of container
images with built-in version management

•	 Docker images are stateless and do not
contain modified files

•	 Layering must be done manually if
needed

•	 VM images are huge binary files not
appropriate for version control

•	 Without developer intervention, VM
images aren’t automatically state-
less making them much harder to
archive, duplicate, and test reliably

Security •	 The barrier between containers and the OS
is thinner

•	 Containers make syscalls into the kernel,
providing a larger attack surface

•	 Virtualized hardware isolates VMs
from each other

•	 VM calls the host OS services exclu-
sively through the host hypervisor,
so attack surfaces are much smaller

https://www.docker.com/
https://docs.docker.com/engine/reference/commandline/cli/
https://docs.docker.com/develop/
https://docs.docker.com/develop/
https://www.docker.com/blog/getting-started-with-docker-for-arm-on-linux/
https://www.docker.com/blog/getting-started-with-docker-for-arm-on-linux/

Toradex provides a family of embedded
SoCs that are able to load the
developer’s containers out-of-the-box.

KDAB — the Qt, OpenGL and C++ experts 12

Don’t want to figure out
how to put a Python build

on your target? Containers
can be a perfect solution.

Toradex

With Torizon, Toradex provides a family of embedded SoCs that are
already fully containerized. The embedded hardware ships with the
Torizon image – a yocto kernel preloaded with Toradex tools and the
docker command – so it’s able to load the developer’s containers out
of the box. Toradex also provides many pre-built container images to
enable quick and easy C/C++, Python, and .NET development as well
as Qt and Crank Storyboard GUIs. Toradex also provides tutorials,
videos, and articles focused on getting up to speed with embedded
containers, making them a go-to resource for embedded developers.

Kubernetes

Also known as k8s for lazy typists, Kubernetes is a container man-
agement and orchestration system. With features to support scaling,
storage orchestration, service discovery, load balancing, and auto-
mated rollouts, most embedded users (especially those who are new
to containers) will find Kubernetes a bit of overkill. It’s also not a good
fit for the resource requirements of most embedded devices in its
current incarnation.

However k3s or Kubernetes-light is a better fit. Having been specifi-
cally developed for IoT and Edge computing, k3s replace the complex
parts of Kubernetes with more limited alternatives to trim down
the footprint, making them much more suitable for deployment on
embedded devices. Developers who work on embedded applications
with complex distributed deployments, large setups that span mul-
tiple systems, or systems that require regular online updates might
want to investigate k3s to see if they make sense for their product.

Container wrap-up

It can take some getting used to the idea of containers, especially for
established embedded practitioners who, approaching everything
with a mindset of optimal efficiency, initially might find them a bit
excessive. When considering just the off-target environment, an

https://developer.toradex.com/software/torizon
https://www.toradex.com/
https://developer.toradex.com/software/torizon#container-images
https://developer.toradex.com/software/torizon#related-articles
https://developer.toradex.com/software/torizon#related-articles
https://kubernetes.io/
https://k3s.io/

If you gradually incorporate containers
into your development workflow,
you’ll be ready when the time comes
to containerize your targets.

KDAB — the Qt, OpenGL and C++ experts 13

embedded development team using containers will see immediate
gains from developer convenience, testing efficiency, and workflow
streamlining.

Whether containers also make sense on-target is at present still an
open question. There are many benefits like dependency insulation,
simple provisioning, and runtime security. But to understand if it
makes sense for your project, you’ll need to consider things like:

•	 Does your hardware vendor provide images that are pre-loaded
with container software?

•	 Do you have reason to update different portions of your applica-
tion independently (diverging dependencies, multiple suppliers,
different update frequencies)?

•	 Can your product be cleanly divided into independent compo-
nents that are updated independently?

•	 Do you have OTA requirements where a container-based solution
could help you roll out new changes?

•	 Does your product have large-scale complex services (such as
industrial or building automation) where modular updates are
essential?

 Embedded containers are an exciting and evolving technology. We’ve
provided a lot of ideas of where you may be able to use containers in
your development practice and products. If you gradually incorporate
containers into your development workflow, you’ll be experienced
and ready when the time comes to containerize your targets. And as
always, we’re happy to help you understand the right fit if you’re still
looking for some answers after this brief introduction.

Containers
aren’t for
everyone;

you’ll want to
assess your
developers,

build, and
deployment
needs first.

Have container questions? We’ve got
container answers.

KDAB — the Qt, OpenGL and C++ experts 14

About the KDAB Group

The KDAB Group is the world’s leading software consultancy for archi-
tecture, development and design of Qt, C++ and OpenGL applications
across desktop, embedded and mobile platforms. KDAB is the biggest
independent contributor to Qt and is the world’s first ISO 9001 certi-
fied Qt consulting and development company. Our experts build run-
times, mix native and web technologies, solve hardware stack perfor-
mance issues and porting problems for hundreds of customers, many
among the Fortune 500. KDAB’s tools and extensive experience in
creating, debugging, profiling and porting complex applications help
developers worldwide to deliver successful projects. KDAB’s trainers,
all full-time developers, provide market leading, hands-on, training for
Qt, OpenGL and modern C++ in multiple languages.

www.kdab.com
© 2020 the KDAB Group. KDAB is a registered trademark of the KDAB Group. All other trademarks

belong to their respective owners.

http://www.kdab.com

