
Ferro blabor mo quibus eium es exceri-
tate volorem quiatemque officia consed
qui nonet at faccull uptibus exerem
volut faccat.

KDAB — the Qt, OpenGL and C++ experts 1

Min nam ni omnis audae
est mos pligeni minusap

ienissinti di asit pratus. Ped
moditatium aliquo

Choosing a Software Stack
Is Qt right for your project?

Till Adam | Chief Commercial Officer

The choice of a software stack is so
important, it’s worth treating the
initial selection as a strategic decision.

KDAB — the Qt, OpenGL and C++ experts

Choosing a software stack

One of the most difficult choices when starting any new software
project is selecting the programming language and framework your
team will use to create it. Should you stick with Qt because it’s the
best tool for the job? Should you switch to something using web-
based technology or designed explicitly for mobile? Is Python a better
choice to integrate in machine-learning capabilities?

The initial software selection process is so crucial because it shapes
how your software is created, its natural limitations and capabilities,
the third-party resources you’re able to use, who is qualified to work
on it, and how long the software will be easily maintained.

However, determining the right framework can be very difficult. Web
resources often provide conflicting guidance or are subjectively based
on a single developer’s perspective. Rarely does anyone create a
substantial program in multiple frameworks that would allow a true
comparison – creating a completely duplicate program of any com-
plexity is very difficult and time consuming. As a result, software stack
comparisons are really too shallow to allow readers to understand
the true consequences of a choice, especially when applied to the
specifics of your project. It’s not surprising then that developers often
follow the course of least resistance. Without a clear reason to switch,
they default to the same language and framework as their previous
project, reusing software that is already familiar.

Since the choice of a software stack is so important to guiding the
project’s future course, it’s worth treating initial software selection as
a strategic decision rather than the unconscious assumption that it
can sometimes be. At KDAB, we often help companies in their soft-
ware assessment process: frequently the question is if Qt is the right
choice. We have certainly done a good deal of Qt development and
believe it’s a great tool. However, it’s not the only tool in the toolbox
and there are occasions where it’s not a great fit. Here is a list of
considerations that we use to help customers select a software stack
that can stand the test of time, whether that’s Qt or something else.

2

Qt provides a powerful
cross-platform development
environment, but it may not
be right for every situation.

Existing codebases carry a lot of know-
ledge and experience with them but
don’t let that hinder you from a newer,
better approach.

KDAB — the Qt, OpenGL and C++ experts

1. Existing codebase

How much code do you already have? Is it cleanly factored, well doc-
umented, and can it be easily reused? Existing development is a con-
sideration that can often overwhelm other decisions. Just remember
that if you have a lot of spaghetti code that can’t easily be reused, it
shouldn’t carry the same weight as solid, reliable, and modular code.
Qt and C++ is not exempt from this consideration: you can inherit ter-
rible code written in any language. Don’t let an existing legacy hinder
you from making a clean break to a newer, better approach.

On the other hand, existing codebases carry a lot of knowledge and
experience with them. This is often not encoded in documentation or
comments but is the result of maturation over a long period of time
and the accumulation of many decisions, workarounds, and fixes.

Starting from scratch with a new framework or programming lan-
guage carries the risk of repeating mistakes from the past. As ever,
weighing these aspects is not a black or white decision and requires
nuanced and careful consideration.

2. Skills and availability

Is your development team already trained up on the software frame-
work in question? Is it easy to find new hires who are fluent in your
chosen framework? Is it easy to retrain developers to learn the new
framework?

The talent pool for expert programmers in a particular framework,
language, or domain can be a significant factor when deciding on
tools. This is especially true for a language as powerful and nuanced
as C++. We’ve found throughout our years of training developers
from diverse backgrounds that Qt tends to tame the complexity of
C++ and provides an excellent framework for programmers of many
levels to be productive. The ability to make developers at different
skills effective contributors comes from Qt’s cleanly structured design
and complete library along with QML, which due to its similarities to
Javascript, makes user interface development dramatically simpler

3

The talent pool
for expert

programmers
can be a

significant factor
when deciding

on your
toolchain.

Since almost all tools do not shine in all
environments, the platform that your
app targets is a major consideration.

KDAB — the Qt, OpenGL and C++ experts 4

Most hardware can support
all development tools, but

you should choose wisely at
the low end.

and closer to web-based development. Even with this acknowledge-
ment, it still remains hard to recruit high quality talent that is able to
tackle challenging areas of Qt and C++: optimizing, modifying plumb-
ing, or extending and customizing.

Outside of Qt, it is easier to fill jobs for web-based technologies. If
your project primarily sticks to the basics, this could be of benefit.
However, if you need to dig under the hood of your web-based
framework, you may be in the same situation – excellent people are
rare regardless of the language. The importance of talent pool and
language choice will vary, depending on your industry, locality and
ability to compete on salaries and other benefits.

3. Platform and silicon

Since most tools shine in some environments but not in others, the
platform that your app targets is a major consideration. One of Qt’s
strengths is building cross-platform applications. However, while it
provides an acceptable UI for all platforms, it won’t be fine-tuned for
each platform. If you are only building mobile apps, for example, you
may want to consider a framework like React Native or Flutter that
specializes in cross-platform mobile development. Similarly, if you’re
only targeting one of the two mobile environments, Apple IOS or
Google Android, you may want to investigate the best tool for each
environment – Swift or Kotlin, for example. Moreover, if your app
has a desktop and web-based interface, it may make sense to use an
HTML5-based tool like Electron that can more easily cross the gap
between the two environments.

Finally, the size of the processor can introduce serious constraints.
While an ARM microprocessor can run nearly any modern toolchain,
microcontrollers have a number of constraints and can be more
limiting in your language and framework choices. While Qt does offer
a trimmed down version to target microcontrollers, it will require a
big focus on performance to shoehorn your application into a small
micro. You’re probably better off picking a smaller lighter-weight
framework that’s designed to go into small applications like Crank

The sophistication of your graphical
needs can be a big driver in selecting an
appropriate programming environment.

KDAB — the Qt, OpenGL and C++ experts 5

Consider your
requirements for

remote access,
such as fre-

quency of use,
UI needs, and

flexibility.

Storyboard, if your main focus is on the low end of the hardware
performance spectrum.

4. User interface requirements

What does your application need to display: simple text, responsive
mobile pages, 3D graphics, complex visualizations? The sophistication
of your graphical needs can be a big driver in selecting an appropriate
programming environment. If you can live with console input and
text output, nearly anything will do. If, however, you’re building a
lot of sophisticated graphs, you may want to consider a language
with extensive data visualization libraries like R, Julia, or Python.
Then again, if you’re looking to do 3D manipulation or integrating
3D graphics into 2D UIs, that’s an area where Qt really shines; web-
based technologies will likely struggle in these types of applications.
Because of its ability to create software closer to the metal, Qt also
does very well in areas where data management is paramount, such
as scientific applications, high-throughput measurement systems, or
real-time data collection.

5. Remote access

If remote access is required, web-based solutions can often be a
natural choice. The upside is that development will naturally use a
browser interface, making remote browser access identical to local
access. However, this benefit is also a downside since web technol-
ogies are constrained to the browser making it difficult to create an
optimal desktop experience. It’s possible to create a tailored desktop
and remote UI with Qt, as it has become very versatile in being able
to support remote and browser-based UIs through WebAssembly or
WebGL. The requirements of remote access should be considered:
will it be used for control more frequently than local access, is it for
maintenance support, is it for training, oversight, or administration?
Based on the frequency of use, UI needs, and flexibility, you can make
a more detailed assessment on whether Qt or web-based tools are
better for your remote access requirements.

Custom hardware is often found in
vertical markets, making it challenging
to use programming environments
isolated from the hardware.

KDAB — the Qt, OpenGL and C++ experts 6

Robotics is an example of a
vertical market that needs
realtime performance and
hardware access.

6. Vertical markets

The market for your product may impact the toolkit you want to use.
Sometimes a particular tool chain has a strong foothold in a particular
area like automotive or point-of-sale applications. Having access to
open source libraries, third-party expert consultants, pre-existing
software stacks, and third-party offerings can help shortcut the
development process. Development using uncommon tools in one of
those areas can mean that your team will need to reinvent the
wheel for common protocols or hardware devices.

In some vertical markets the application will need to directly access
hardware. If all hardware components are off-the-shelf and have
properly encapsulated drivers, then this won’t be a problem,
regardless of language. However, custom hardware is often found
in industrial or robotics designs, making them challenging to use in
programming environments that use a virtual machine such as Java
or web-based technologies.

The final constraint that vertical markets may impose are software
lifecycle, development, and quality standards that must be met for
regulation and safety reasons. You’ll want to pick a language and
toolset that is familiar to certifying agencies and doesn’t introduce
any problematic concepts like unprompted garbage collection. While
the specifics of each standard differ, similar characteristics will apply
to medical devices that need IEC 62304 certification, automotive
systems that comply to ISO 26262, and industrial systems that require
IEC 61508 compliance.

7. Tool interest and longevity

Is the language you want to use “hot” in the development community?
A tool’s popularity may tell you how easy it will be to have program-
mers join your team. “New and exciting” needs to be balanced with
stability – don’t pick something that’s so new it is undergoing
continual refinement and requires changes throughout the code
base on each subsequent tool release.

Finding tools that can easily integrate
unit testing into the development pro-
cess can help maintainability and should
be a priority for modern development.

KDAB — the Qt, OpenGL and C++ experts 7

Be sure to
consider the

long-term
strategic impacts

of development
tool choice
outside of

engineering.

Another measure of developer interest is the community size. If your
tool of choice has a large and active forum on Stack Overflow or
Reddit, and ongoing projects on GitHub, you’ll know there are plenty
of programmers interested and contributing in that space. Newer
tools may have a lot of interest but fewer practitioners and smaller
online communities. Another measure of desirability is lifespan.
Languages and tools that have been around a long time have proven
their worth and have lived beyond obsolescence.

Finally, is the software easy to maintain? The more maintainable the
code base, the longer the productive lifespan – you’ll be able to keep
the code fresh and reusable across multiple projects. While maintain-
ability is often as much about programming style and documentation
standards, tool characteristics can help or hurt maintainability too.
Development environments that contain a hodgepodge of techniques
and paradigms make it very difficult for a developer to know where
and how to fix a bug or extend functionality without breaking existing
code. Tools built on web standards can be difficult to modify with a
combination of HTML5, JS, CSS, and custom JavaScript frameworks.
However, Qt applications can also suffer from this problem due to
the mix of C++, QML, and Qt libraries. Finding tools that can easily
integrate unit testing into the development process can help main-
tainability and should be a priority for modern development.

8. Strategic considerations

Often, development tool choices are not considered by anyone
outside of the engineering department. However, with the additional
impacts that software tool choice imposes on hiring talent, available
consultants, the cost and availability of third-party libraries, codebase
longevity, and product stability, it is wise to make these strategic
decisions with input from the whole team. Certainly, you want your
programmers to feel the choice of development tool is a good tech-
nical fit, however, engineers may not be as aware of all the other
downstream considerations – just as management, HR, leadership, or
other corporate areas may not fully understand the technical aspects

There’s a lot to consider when making
your initial software selection; while Qt
makes sense for a good number of proj-
ects, it’s not the only kid on the block.

KDAB — the Qt, OpenGL and C++ experts 8

We can help you structure
your decision-making

process around the soft-
ware options that might be
the best fit for you and give
you the necessary guidance

to head in that direction.

of software selection. Bringing all parties to the table to create an
open dialog for selecting critical software tooling will ensure that such
decisions not only help the immediate product development but also
support the company’s longer-term considerations.

Summary

As you can see, there’s a lot to consider when making your initial
software selection. While Qt makes a lot of sense for a good number
of projects, it’s not the only kid on the block. We have lots of experi-
ence helping customers evaluate whether Qt is the right choice for
a project. We know all about the framework, its license options, its
strengths and weaknesses, and much about other possible choices.
We have seen people pick Qt and succeed but we’ve also seen people
have problems. We can help you structure your decision-making
process around the software options that might be the best fit for you
and give you the necessary guidance to head in that direction.

About the KDAB Group

The KDAB Group is the world’s leading software consultancy for archi-
tecture, development and design of Qt, C++ and OpenGL applications
across desktop, embedded and mobile platforms. KDAB is the biggest
independent contributor to Qt and is the world’s first ISO 9001 certi-
fied Qt consulting and development company. Our experts build run-
times, mix native and web technologies, solve hardware stack perfor-
mance issues and porting problems for hundreds of customers, many
among the Fortune 500. KDAB’s tools and extensive experience in
creating, debugging, profiling and porting complex applications help
developers worldwide to deliver successful projects. KDAB’s trainers,
all full-time developers, provide market leading, hands-on, training for
Qt, OpenGL and modern C++ in multiple languages.

www.kdab.com
© 2020 the KDAB Group. KDAB is a registered trademark of the KDAB Group. All other trademarks

belong to their respective owners.

http://www.kdab.com

