
KDAB | the Qt, OpenGL and C++ experts 1

Your ability to spot errors at compile-time may
also suffer due to recent advancements in both
the programming language specification and
compiler.

These days, the ISO standardization group
is releasing a new version roughly every
three years and the C++ language standard
is evolving and improving faster than ever.
Yet a significant number of new and helpful
language features still aren’t used in the
majority of software projects. It’s possible that
programmers overlook C++’s improvements
because they aren’t aware of the new features.
Or they don’t have management support to fix
something that is not yet technically broken.

The truth is that modernization improvements
do have immediate pay-offs – both in terms of
development time and (ultimately) money.

Regardless of the positive impact on your
software project and the company’s bottom
line, there’s a reasonable fear that changes
distributed across source code may introduce
bugs into what was once a stable product.
To mitigate the cost and risk associated with
code modernizations, tools for diagnosing
and refactoring the usual programming
patterns have become more and more
popular. This whitepaper looks at a number
of techniques used by automation tools to
transform commonly used coding patterns

Code modernization is an essential part of the software development
discipline. If you neglect modernizing your code, your project could
miss out on improvements that help readability and maintainability,
and lose out on optimizations that improve performance.

Modernizing C++
Kevin Funk M

ar
ch

 1
8

KDAB | the Qt, OpenGL and C++ experts 2

Modern C++ language standards and newer compilers are
continually advancing the state of the art to find more and
more hidden problems in your code.

to a more modern version. These techniques
provide a small sample – there are many code
improvements that can be automated that your
modernization effort may want to consider.
You may also want to read KDAB’s Modernizing
Legacy Systems whitepaper for a detailed guide
on how to evaluate, plan, and execute a full-
scale modernization effort.

1) Avoiding programming mistakes

Besides generating an executable from your
source code, the compiler is an indispensable
guide that helps you write a program by
ensuring your code makes sense, reporting
errors, and warning about situations that are
confusing or ambiguous. Compilers help find
so many issues with code before they become
run-time bugs that we developers often wish
they could flag even more problems. Thankfully,
modern C++ language standards and newer
compilers are continually advancing the state
of the art; by keeping up with the newest C++
compiler, you’ll find more and more hidden
problems in your code.

C++11’s override

One of the least complicated features
introduced in C++11 is the new override
keyword. Have you ever tried overloading
a virtual function in a derived class, only to
discover your new function is never called when
running the program? Using override makes the
intended use of a method declaration explicit,
providing more clarity of the author’s intent
for derived classes and overloading virtual
functions – both to the human reader as well
as the compiler.

Example:
struct Base {
 virtual void reimplementMe(int a)
 const {}
};
struct Derived : public Base {
 // override base class method
 virtual void reimplementMe(int a)
 {}
};

In the Derived class example above
we attempted to override the method
Base::reimplementMe() but we accidentally
introduced a mistake in it’s method signature –
we forgot the const. Thus, the signature of the
two declarations differ, so the Derived method
does not actually override the Base method
and Derived::reimplementMe() will not be called
at runtime. Compiling this code snippet under
C++03 won’t issue any warnings or errors about
a potential mistake.

Nearly every seasoned C++ programmer has
wasted hours of their life figuring out why an
overridden method was never called at runtime
only to discover that it’s due to an inadvertently
mismatched method signature. Another very
common way to encounter this problem is if you
change the signature of the base class virtual
function and the derived classes re-implement
that method – but you forget to adapt the
overridden methods accordingly. Again, this will
go unnoticed by the compiler if override isn’t
used.

Thankfully, with the introduction of the new C++
override keyword in C++11, you can indicate the
belief that you’re overriding a function and the
compiler can double-check if your assumption is
correct.

KDAB | the Qt, OpenGL and C++ experts 3

The introduction of the new C++ override keyword in C++11
can save you countless hours of debugging when applied
consistently.

Improved solution:
struct Base {
 virtual void reimplementMe(int a)
 const {}
};
struct Derived : public Base {
 // override base class method
 virtual void reimplementMe(int a)
 override {}
};

Now if we compile this snippet, we get:
% clang++ -std=c++11 test.cpp
test.cpp:6:18: error: ‘reimplementMe’
marked ‘override’ but does not override any
member functions
 virtual void reimplementMe(int a)
override {}
 ^
1 error generated.

With the override keyword the compiler ensures
that the signature of the method marked
with override matches one of the method
signatures in the base class (or classes). If it
doesn’t, the compiler reports the oversight and
aborts. Applying this consistently throughout
your codebase can save countless hours of
debugging.

C++11’s range-based for

Another easy-to-use feature of C++11 is the
new range-based for, which can replace the
traditional for loop when iterating over a range
of values. This feature provides a safer way
to loop over all elements of a container since
you don’t have to deal with iterators or index
variables and instead can work with ranges
directly.

Example:
const int N = 5;
int arr[] = {1,2,3,4,5};

vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(3);

// safe conversion
for (int i = 0; i < N; ++i)
 cout << arr[i];

// reasonable conversion
for (vector<int>::iterator it = v.begin();
it != v.end(); ++it)
 cout << *it;

// reasonable conversion
for (int i = 0; i < v.size(); ++i)

 cout << v[i];

In this case, we can convert these loops to use
a range-based for. Because it can be mentally
taxing to determine exactly how to convert a
loop and whether it will have any unintended
side effects, the C++ linter tool Clang-Tidy
provides automatic conversion of for into range-
based for as one of its rules. The tool assigns
different levels of confidence (risky > reasonable
> safe) to each type of transformation. In this
example, a for loop that calls .end() or .size()
after each iteration will be transformed with
reasonable confidence since the new version
with a range-based for will only call these
methods once during the initialization of the
loop. In the admittedly unusual circumstance
that .end() has side-effects, the semantics of
the transformed loop will differ. Most likely
though, this transformation will only improve
performance since repeatedly calling these
methods isn’t necessary for processing the loop.

KDAB | the Qt, OpenGL and C++ experts 4

Tools that optimize code without firing up the profiler
make sense to use on code without identified performance
problems – because even the tiniest penalties add up.

Improved solution:
// safe conversion
for (auto & elem : arr)
 cout << elem;

// reasonable conversion
for (auto & elem : v)
 cout << elem;

// reasonable conversion
for (auto & elem : v)
 cout << elem;

Default member initializers

C++11 allows class members to be initialized
at the point of declaration. This makes it a lot
less likely to forget initializing class members in
constructor definitions. This feature is explained
in the following example.

Example:
struct A {
 A() : i(5), j(10.0) {}
 A(int i) : i(i), j(10.0) {}
 int i;
 double j;

};

Improved solution:
struct A {
 A() {}
 A(int i) : i(i) {}
 int i = 5;
 double j = 10.0;

};

The algorithm in this example converts a
default constructor’s member initializers into
the new default member initializers in C++11,
and member initializers that match the default
are removed, reducing repeated code. Because
it eliminates the need to explicitly initialize
member variable values, this may even support
‘= default’ for some simple constructors where
the compiler supplies a default constructor.

2) Improving performance

Many programmers wait until they have serious
performance problems before they try to make
their code run faster. Let’s face it: it’s not easy
optimizing for performance – locating and
fixing poorly performing code can be a time-
consuming and expensive operation. However,
some tools can help optimize code without
even firing up the profiler. They make sense to
run even on code that doesn’t have identified
performance problems because even the tiniest
penalties add up – many performance issues
are death by a thousand cuts. Besides, no
user has ever complained about their program
running too fast or using too little battery.

Avoiding unnecessary copy initialization

This optimization finds local variable
declarations that are initialized using the copy
constructor of a non-trivially copy-able type,
where a non-modifiable const reference would
suffice.

Example:
const string& constReference();
void Function() {
 // The warning will suggest
 // making this a const reference.
 const string UnnecessaryCopy =
 constReference();

}

The Clang-Tidy script will suggest replacing
the copy by a const reference if the variable is
already const qualified or if it is only used as a
constant in subsequent code.

Doing so avoids a full copy of the referenced
instance, likely with a slight performance boost –
depending on how often this construct is found
in your code.

KDAB | the Qt, OpenGL and C++ experts 5

Minimize excessive padding in record structures – and its
needless memory consumption – by following the order
recommended by the tool.

Avoiding unnecessary copy initialization in
range-based for

The following optimization example, while
similar to the previous one, focuses on
unnecessary copy initializations inside the
initialization of the range-based for loops. If the
loop variable is used by value and hence copied
in each iteration but a const reference would
work as well, the code is flagged.

Example:
for (const auto included_category :
included_categories) {
 if (category == included_category)
 return true;

}

Improved solution:
for (const auto& included_category :
included_categories) {
 if (category == included_category)
 return true;

}

Only loop variables that are expensive to
copy (having a non-trivial copy constructor
or destructor) will be replaced with a const
reference as above.

Excessive padding in record structures

Every data type has a memory alignment that’s
mandated by the processor architecture.
Aligning variables in memory allows the
processor to fetch data in an efficient manner,
improving performance. As an example, let’s
examine just two data types: char (with an
alignment of 1 byte on 32- & 64 bit systems)
and int (an alignment of 4 bytes on 32- & 64-bit
systems). In other words, a char will use 1 byte,
whereas an int will use 4 bytes.

So far so good … but it becomes more
complicated because the compiler tries to
maintain proper alignment of data elements by
inserting unused memory between elements

within a struct, class, or union. This technique is
known as padding. Of course, the compiler will
be wasting memory unless your classes use the
smallest amount of padding possible.

Example:
struct Record {
 char ch1;
 int i;
 char ch2;

};

The memory layout for Record looks like this:

1 ch1 pad pad pad 4

5 i 8

9 ch2 pad pad pad 12

Our structure has a total of 12 bytes of memory,
with six wasted bytes of padding, which the
Clang Static Analyzer will conveniently tell us:

% clang-5.0 -cc1 -analyze -analyzer-
checker=optin.performance -analyzer-config
optin.performance.Padding:AllowedPad=2
test.cpp
test.cpp:1:8: warning: Excessive padding
in ‘struct Record’ (6 padding bytes, where
2 is optimal). Optimal fields order: i,
ch1, ch2, consider reordering the fields or
adding explicit padding members

If you had a container filled with several million
Record structs, you would waste six megabytes
of memory with padding! You can minimize this
needless memory consumption by following
the order recommended by the tool (generally
ordering the widest data types first).

Improved solution:
struct Record {
 int i;
 char ch1;
 char ch2;

};

KDAB | the Qt, OpenGL and C++ experts 6

Reading clean code without excess clutter is far easier than
unstructured source with lots of extra information that’s not
needed.

Now, the memory layout for Record looks like
this, saving four bytes at the end:

1 i 4

5 ch1 ch2 pad pad 8

Analyzing this code snippet with Clang Static
Analyzer again will no longer show any issues.
We removed the excessive padding, thus
shrinking the Record class by one third. Our
memory caches will be happy!

3) Improving readability

Reading clean code without excess clutter is
far easier than unstructured source with lots
of extra information that’s not needed. Less is
more, at least for source code.

Simplifying boolean expressions

If your boolean expressions involve boolean
constants, it’s better to simplify them to use
the appropriate boolean expression directly.
These can result in some pretty straightforward
replacements; a small sample of them
represented below.

Expression Simplified

if (b == true) if (b)

if (b == false) if (!b)

if (b && true) if (b)

if (true) t(); else f(); t();

if (e) return true;
else return false;

return e;

The less code you have to read while
maintaining overall readability, the better.

Use empty() instead of size() > 0

Standard library containers have both a size()
method (returning the number of elements in
the container) as well as an empty() function for
checking whether a container is empty or not.
It’s a relatively common pattern that developers
use to check whether the container’s size
is greater than zero instead of asking if the
container is empty. The latter is preferred

since calling the empty() function may be more
efficient and increases the readability of the
code with a clear intent to check for emptiness.

Example:
if (myVector.size() > 0) {
 // do something

}

Improved solution:
if (!myVector.empty()) {
 // do something
}

Use auto keyword

Iterator type specifiers tend to be long and
used frequently, especially in loop constructs.
The auto keyword introduced in C++11 allows
the compiler to deduce a variable’s type, which
works perfectly in the case of iterators, since
only one possible type can apply. Replacing
a long complicated iterator type with auto
improves readability and maintainability, and
makes code less obscure.

Example:
for (std::vector<int>::iterator
 I = my_container.begin(),
 E = my_container.end();
 I != E; ++I) {
}

Improved solution:
for (auto I = my_container.begin(),
 E = my_container.end();
 I != E; ++I) {

}

Frequently, when a pointer is declared and
initialized with new, the type of the pointer is
written twice – once in the declaration and
once in the new expression. In these cases,
the declaration type can also be replaced
with auto, leaving a single instance of the type
declaration, and again improving readability and
maintainability.

KDAB | the Qt, OpenGL and C++ experts 7

Compiler-guided refactoring is a great way to automatically
rewrite large portions of your source code to improve its
performance and increase its readability.

Example:
TypeName *my_pointer =

 new TypeName(my_param);

Improved solution:
auto *my_pointer =

 new TypeName(my_param);

4) Project-specific transformations

Some projects require custom algorithms in
order to transform large quantities of code in a
specific way.

As an example, Clazy is a custom compiler
plugin (developed by KDAB) that understands
Qt semantics and gives the compiler the ability
to check for more than 50 Qt related issues. In
some specific cases, it can also automatically
refactor code.

Fixing old style connects in Qt code

In Qt, the older syntax that connects events with
SIGNAL(...) and SLOT(...) is much slower than its
newer replacement, which uses a pointer to a
member function (PMF).

Example:
connect(model,
 SIGNAL(registeredToView(
 KTextEditor::View*)),
 this,
 SLOT(disableKeywordCompletion(
 KTextEditor::View*))
);
connect(model,
 SIGNAL(unregisteredFromView(
 KTextEditor::View*)),
 this,
 SLOT(enableKeywordCompletion(
 KTextEditor::View*))
);

Improved solution:
connect(model,
 CodeCompletion::registeredToView,
 this,
 &ClangSupport::disableKeywordCompletion
);
connect(model,
 &CodeCompletion::unregisteredFromView,
 this,
 &ClangSupport::enableKeywordCompletion
);

Summary

Compiler-guided refactoring is a great way to
automatically rewrite large portions of your
source code to improve its performance,
increase its readability, or take advantage of
modern features.

You ‘only’ need to write the algorithms that
analyze your existing codebase, apply the
transformation, and output the updated
code – something that requires a solid
understanding of the C++ programming
language, compiler parsing techniques, and
compiler internals. While developing automatic
code transformation is not for the squeamish,
it is a technique that can provide tremendous
timesaving when amortized over a large code
base and with much less risk than thousands of
manual source edits.

At KDAB, we’ve helped many companies with
their modernization efforts. Should you want
to bring your source code up to the latest and
greatest C++ standards, we’d be happy to help
you tackle the job.

KDAB | the Qt, OpenGL and C++ experts 8

Developing automatic code transformation is not for the
squeamish but can provide tremendous timesaving with
much less risk than manual source edits.

Sources for examples

•	 https://clang.llvm.org/extra/clang-tidy/
checks/modernize-use-override.html

•	 https://clang.llvm.org/extra/clang-tidy/
checks/modernize-loop-convert.html

•	 https://clang.llvm.org/extra/clang-tidy/
checks/modernize-use-default-member-init.
html

•	 http://releases.llvm.org/5.0.1/tools/
clang/tools/extra/docs/clang-tidy/
checks/performance-unnecessary-copy-
initialization.html

•	 http://releases.llvm.org/5.0.1/tools/
clang/tools/extra/docs/clang-tidy/checks/
performance-for-range-copy.html

•	 https://reviews.llvm.org/D14779

•	 https://clang.llvm.org/extra/clang-tidy/
checks/readability-simplify-boolean-expr.
html

•	 https://clang.llvm.org/extra/clang-tidy/
checks/readability-container-size-empty.
html

•	 https://clang.llvm.org/extra/clang-tidy/
checks/modernize-use-auto.html

Other sources

•	 https://www.cppdepend.com/modernizer

•	 https://www.kdab.com/clang-tidy-part-1-
modernize-source-code-using-c11c14/

•	 https://dzone.com/articles/a-software-
developers-guide-to-maintaining-code/

About the KDAB Group

The KDAB Group is the world’s leading software
consultancy for architecture, development and
design of Qt, C++ and OpenGL applications
across desktop, embedded and mobile
platforms. KDAB is the biggest independent
contributor to Qt and is the world’s first ISO
9001 certified Qt consulting and development
company. Our experts build run-times, mix

native and web technologies, solve hardware
stack performance issues and porting problems
for hundreds of customers, many among
the Fortune 500. KDAB’s tools and extensive
experience in creating, debugging, profiling and
porting complex applications help developers
worldwide to deliver successful projects.
KDAB’s trainers, all full-time developers, provide
market leading, hands-on, training for Qt,
OpenGL and modern C++ in multiple languages.

www.kdab.com

© 2018 the KDAB Group. KDAB is a registered trademark of the KDAB Group. All other trademarks belong to their respective owners.

