
Breathing life into your applications:
Animation with Qt 3D
Dr Sean Harmer
Managing Director, KDAB (UK)
sean.harmer@kdab.com



Contents

• Overview of Animations in Qt 3D
• Simple Animations
• Skeletal Animations
• Blended Animations
• For the future

Credit to Johann Woelper and
Timo Buske for producing the assets

2



Overview of Animations in Qt 3D

3



Why are we doing this?

• Qt is not only for developers
• Content creators too
• Developers not great at complex content
• Artists not great at software development
• Let each do what they are good at!

4



Why are we doing this?

• Scalability
• Complex animations consume lots of data
• Qt 3D scales well to many cores
• Non-blocking on main thread
• Frontend objects can opt-in to property updates

5



What is Animation?

• Sequence of still frames
• Rapid display fools our primitive monkey brains
• Traditional animators draw every frame

6



Key Framed Animations

• Computers are good at maths
• Animators set positions at key points in time (frames)
• Get the computer to interpolate

7



Offline vs Real-time

• Offline rendering (TV & Movies)
• Time of each frame known exactly
• Exactly scripted

• Real-time rendering (Applications/Games)
• Variations in timing
• Interactive

8



Offline vs Real-time

• Offline rendering
• Artists can set exact positions at every frame
• Animations for one specific use

9



Offline vs Real-time

• Real-time rendering
• Need to calculate position at any time
• Animations need to be reusable
• Ideally animations should be able to be composed

10



Interpolation

• Linear Interpolation (LERP)
• Simpler mathematics
• More data

• Higher Order
• More complicated mathematics
• Less data

11



Workflow

• Artists author using higher order
• Asset conditioning

• Process to run-time format
• Export curves or re-sample curves for lerping

• Consumption

12



Authoring Example

• Simple bouncing ball

13



Animation Tips

• Artists can use familiar tools
• Using data rather than forcing programmer art:
• Squash and stretch
• Anticipation
• Variation
• Fine control (rebound, inertia etc.)

14



Simple Animations

15



Animations at Runtime

• 3 concepts:
• Animation data
• Animation playback
• Target for the animation

• Qt Quick animations conflate all 3
• Qt 3D separates them for reuse, flexibility and efficiency

16



Animation Data

• Data from artist:
• AnimationClipLoader

• Data from application:
• AnimationClip

17

QAnimationClipData

QChannel

QChannelComponent

QKeyFrame



Animation Playback

• Simple playback achieved with ClipAnimator
• More advanced options available (see later)

18



Animation Targets

• Animations are reusable
• Map animation data to multiple properties of multiple objects
• ChannelMapper and ChannelMapping

19



Playback Example

• Simple bouncing ball

20



Skeletal Animations

21



What is Skeletal Animation?

• So far we’ve dealt with rigid body transforms
• Acts on whole mesh
• Limitations on how “alive” we can make objects feel

• Skeletons (Armatures) allow to deform a mesh
• Living creatures deform
• Handy to be able to animate parts of a mesh
• Does not need to be “squishy” like us meatbags

• Before we animate…
• We need to know how to render skinned meshes

22



Creating Skinned Meshes

• Artist:
• Creates mesh
• Creates a skeleton
• Binds vertices of mesh to one or more bones
• Bone indices and weights stored as per-vertex 

attributes of the mesh
• Usually limited to 4 bones influencing each 

vertex
• Creates animations for bones (key framed 

poses)
• Export

23



Joint vs Bone

• Literature refers to Joints and Bones
• The terms are interchangeable
• DCC tools often show bones graphically
• Joint is technically more correct
• Not physical bones
• Skeleton is just a hierarchy of nested 

coordinate systems
• Usual parent child inheritance of transforms
• Just applied within a single Entity

24



Drawing a Skinned Mesh
Single vertex single joint

25

𝒗" = (4, 3)

𝐵"

𝒗*+,-.+ = (10, 16)

𝐶"

𝒗",3 = (4, 3)

𝒗",3 = 𝐶"𝐵"45𝒗"



Drawing a Skinned Mesh

• Realistic Case: Many vertices, weighted joints
• Exactly the same maths!
• We store the joint poses as local transforms
• To calculate joint global pose we need to compose it with parent, grandparent…
• Inverse bind matrix never changes
• Best performance by linearising the joint hierarchy
• Calculate skinning matrix for each joint in the array
• Pass to shader program as uniform array or UBO
• Vertex shader applies weighted skinning matrices to vertices

26



Skinned Meshes in Qt 3D

• Entity should aggregate:
• GeometryRenderer component referencing…

• Geometry containing joint indices and joint weights
• Use Mesh for loading from file

• Armature component referencing…
• Skeleton of joints
• Use SkeletonLoader for loading from file
• Can optionally create frontend hierarchy of Joints

27



Skinned Mesh Example

28



Animating a Skinned Mesh

• We already have everything we need!
• Animation data contains local transforms of joints
• Map animation data to skeleton with SkeletonMapping
• Animator updates skeleton pose and sends to render aspect

• Simple or with a blend tree

• Renderer calculates new skinning matrix palette and…
• Draws skinned mesh as usual

29



Skeletal Animation Example

• Humanoid

30



Playback Speed

• Nice to be able to control animation playback speed
• Default uses global simulation time (wall time)
• Can set a Clock on one or more ClipAnimators
• Control speed with Clock’s playbackRate property
• All associated animators affected
• Useful for some effects

• E.g. Allows to slow down animation of 3D objects whilst keeping 2D UI fluid

31



Blended Animations

32



Why Blend?

• Avoid combinatorial explosion
• Smooth transitions
• Run-time control

33



Uses of Animation Blending

• Smoothly mix walk cycle and run cycle
• Animate head in different ways whilst 

walking
• Blend from healthy to injured
• Transition from idle to walking
• Blend from backward/forward motion 

to strafing

34



How to Blend Animations

• Simple case: Walking vs Running
• Walk animation cycle: 3 seconds
• Run animation cycle: 2 seconds
• Blend factor controlled by user input (Axis)
• Or any other program data

35



How to Blend Animations

• Work in normalised time (phase on range [0,1]) for each contributing clip
• Requires feet to hit ground at same phase in both clips

36



How to Blend Animations

• From global time, calculate phase, ∅
• Evaluate channels from walk clip at ∅, 𝐴(∅)
• Evaluate channels from run clip at ∅, 𝐵(∅)
• LERP to get resulting channel values 𝐶 = 1 − 𝛽 𝐴 + 𝛽𝐵
• Complicated to deal with missing data

37



Other Types of Blend

• LERP is common
• Other possible types:

• Additive
• Generalised 1D LERP
• Bilinear 2D LERP
• Barycentric LERP
• Generalised Barycentric LERP

38



Combining Blends

• No reason to limit to a single blend?
• Combine in an arbitrary blend tree
• An Abstract Syntax Tree (AST) for animations
• “Constants” are animation clips
• Arguments are blend parameters

• Bound to user inputs or
• Application data

39



Animation Blending Example

• Simple LERP Blend Tree

40

LERP	Blend
(blendFactor)

Clip	A

Clip	B

Final	Clip



For the Future

41



Future Animation Work

• Morph target animation: Absolute and relative targets
• Orchestrated clip animator: State machine controlled set of blend trees with 

transitions
• Channel masking and blending operations
• Root motion extraction
• More optimisations
• Tooling: Graphical blend tree designer

42



Summary

• Qt 3D offers high performance animations
• Opt-in to property changes
• Artists create data
• Developers integrate data into application
• First class support for skeletal animations
• Playback rate support
• Animation blending

43



Thank you for listening!
Any questions?
https://www.kdab.com
Sean Harmer <sean.harmer@kdab.com>


