
What’s new in Qt 3D
Dr Sean Harmer

Contents

• New in Qt 3D with Qt 5.9
• New in Qt 3D with Qt 5.10
• For the future

2

New in Qt 3D with Qt 5.9

3

Physics Based Rendering

• PBR rendering gives much nicer results
• Based on the physics of how light interacts

with matter
• Control with intuitive properties
• See previous talks for details
• Two new materials in Qt 5.9:

• QMetalRoughMaterial
• QTexturedMetalRoughMaterial

• New light type:
• QEnvironmentLight

• Also, QSkyBox

4

Painted Textures

• Have legacy painter code you want to use in 3D?
• Needs integration to be useable with QTexture2D
• Provided by QPaintedTextureImage:

• Inherit from it
• Override the paint() function
• Use like any other texture image
• From C++ or QML

5

Embed Qt Quick 2 in Qt 3D

• Do you want to embed Qt Quick 2 within 3D?
• Scene2D element is provided by the QtQuick.Scene2D module
• Takes a Qt Quick Item as child which will be your whole 2D scene
• Renders the 2D scene into a RenderTargetOutput controlled by the output

property
• Resulting texture can be used by any material
• The entities property allows to declare on which entities the texture will be

used
• Necessary for mouse event handling
• Requires PickingSettings.TrianglePicking to be set to have the triangle information

6

Level of Detail Support

• Scenes often contain complex objects
• Such objects are expensive to display
• Does it still make sense if they are far from

the camera?
• With level of detail management, simpler

objects can be displayed instead
• This feature is provided with LevelOfDetail

and LevelOfDetailLoader
• Switch based upon distance from camera or

projected screen size

7

Text: 3D Geometric

• Generating geometry out of text is done with ExtrudedTextGeometry or
ExtrudedTextMesh

• Can be used like any other Geometry or GeometryRenderer
• The font and text are controlled using properties
• The depth of the extrusion is controlled with the depth property

8

Text: 2D Distance Field

• Based on distance fields – just like Qt Quick 2
• Provided by Text2DEntity

• It’s an Entity as it provides geometry, material and transform
• Just place it in your object tree

• font, color and text are controlled using properties
• Size of the surface on which the text is rendered can be controlled via width

and height

9

Frame Graph Nodes - RenderCapture

• Allows to create “screenshots” of the scene
rendering

• Allows to debug complex multi-pass rendering
• One can save as an image one of the intermediate

steps
• RenderCapture is a FrameGraphNode
• Each time a capture is needed, a call to
requestCapture() is necessary

• Requests are processed asynchronously

10

Input Axis Accumulators

• Axis provides floating point user input
• From mouse, keyboard, joystick etc

• We only have access to the instantaneous axis value
• Forces us to use imperative code on the main thread:

• Typically increment a value based on the axis position
• Need frame time delta and then integrate axis value

• AxisAccumulator does this for you without the need for main thread callbacks
• Can treat the axis value as a velocity or an acceleration
• Integration over time performed on backend and property update sent to object

11

New in Qt 3D with Qt 5.10

12

Skeletal Animations

• Allows animating parts of an Entity
• Either organic or rigid body

• Builds on the key frame animation foundation from Qt 5.9
• New renderer types: Armature, Skeleton, SkeletonLoader, Joint
• New animation type: SkeletonMapping
• Works with animation blend trees (much fun)
• Shameless plug:

Come see my talk tomorrow at 13:30:
“Breathing Life Into Your Applications”

Be there or be two triangles arranged into a square!

13

Shader Graphs

• Materials tend to suffer from combinatorial explosion
• Each input may be constant (uniform) or texture
• Many variations on a theme
• People are (sometimes) scared of GLSL
• Shader graphs provide higher level abstraction
• Work with the concepts
• Let node writers and engine worry about the details

14

Shader Graphs

15

Shader Graphs

16

Shader Graphs

• Private API in QtGui
• Potential to be shared by Qt Quick 2 in the future

• One public type in Qt 3D: ShaderBuilder
• We provide default set of node prototypes
• User and we can make shader graphs
• ShaderBuilder consumes graph and generates GLSL shader program
• Already in use with PBR and Phong materials in Qt 5.10
• Initially concentrating on Fragment Shaders
• Later expanding to other shader stages: vertex, tessellation, geometry, compute.

17

Sprite Sheets

• Provides the ability to use an image from a tile within a texture based upon a
provided index

• SpriteGrid provides an interface to tessellate a 2D texture into a regular grid
• Control with rows and columns properties

• SpriteSheet contains SpriteItems describing your own custom texture atlas
layout.

• Set the currentIndex property to switch between sprites
• QAbstractSpriteSheet calculates a texture transform matrix you can then

pass to TextureMaterial.

18

Helpers

• QCamera::viewAll() command adjust camera position to fit whole scene into
view.

• QMesh and QTextureLoader now support remote urls
• Points and lines can now be picked by ObjectPicker in addition to bounding

spheres and triangles
• Optional support for SIMD instructions in the Qt 3D renderer

• Currently supports SSE2 and AVX2
• Configure time option –qt3d-simd-sse2 (default) –qt3d-simd-avx2
• Will be extended to other aspects over time

19

Frame Graph Nodes

• Improved Layer filtering support
• Layers are now optionally recursive!
• ProximityFilter frame graph node

• Only render entities close to another (e.g. the camera)

• FramebufferBlit frame graph node
• Copy a rect from one RenderTarget to another on the GPU
• Set sampling options
• Useful for many rendering algorithms or resolving multisampled textures

20

For the Future

21

Future Work

• Better documentation
• Task oriented help topics

• More examples
• Need solution for large assets

• Performance
• Bug fixing
• Improve existing aspects
• VR/AR support
• Vulkan support

22

Future Work

• Tooling:
• Texture compression
• Shader graph designer
• Animation blend tree designer
• Debug and profiling tools

• Better feedback
• Engine introspection

23

Summary

• Good set of features
• Focus now on stability, performance, convenience

24

Thank you for listening!
Any questions?
https://www.kdab.com
Sean Harmer <sean.harmer@kdab.com>

