
Earth Rendering With Qt3D

Paul Lemire

2

Generatng the Earth

1) What do we need?
1) Generatng the Earth Ellipsoid

2) Adding Details with imagery tles

3) Terrain Elevaton

2) In practce
1) Drawing

2) Building Data to be rendered

3) Handling Precision issues

What do we need?

Generatng the Earth Ellipsoid

5

Coordinates Systems

● Geographic Coordinates
– Lattude, Longitude, Height → Geodetc

● Cartesian Coordinates (using the WGS84 coordinate system)
– x, y, z relatve to the center of the earth

– Defnes earth ellipsoid radii

(6 378 137km, 6 356 752.3km, 6 378 137km)

–

● Projected Coordinates
– Mercator projecton (usually on WGS84 ellipsoid)

for 2D Maps

90°N

90°S

0° 0°
180°E180°W

z

x y
0°, 0° 90°, 0°

0°, 90°

180°W

180°E

0°

90°N

90°S

0°N

6

Earth Ellipsoid

● Various techniques to create a sphere
– Geographic Grid Tessellaton

● Result in non uniform tle size but maps easily with imagery

– Cube Map Tessellaton
● Non uniform tle size but beter than the geographic grid, doesn’t map straightaway with imagery

– Tetrahedron, Octahedron Tessellaton
● Uniform tle size, doesn’t map straightaway with imagery

● We want lots of details, lots of vertces

● But the GPU cannot contain it all at the same tme

7

Cube Map Tessellaton
● Generate a sphere from a cube

● Subdivision becomes easy

● Cube → Sphere
– Startng from a unit cube (-11, 1)

– We normalize each vertex

● Sphere → Ellipsoid
– We multply the normalized vertex by the WGS84 radius

(6 378 137 m, 6 356 752.3 m, 6 378 137 m)

● Area of each subdivision doesn’t vary much
– Not as good as Tetrahedron tessellaton though

● Maps well to cubemap texturing

8

Handling Level of Details

● We want to model earth from

space as well as on surface
– Large Range of Values (km → m)

– Too much data to be rendered at once
● Doesn’t ft in RAM

● GPU not powerful enough

● Not enough disk space

● We need an acceleraton structure
– Divide the world into areas

– QuadTree, Octree

0

1

2 2 2 2

1

2 2 2 2

1

2 2 2 2

1

2 2 2 2

3 3 3 3 3 3 3 33 3 3 3

9

Adaptatve LOD

● We want to subdivide our ellipsoid so that we can

have more nodes on the areas we are looking at

– Our cube/sphere is composed of 6 faces
● Each face has a root node
● Each node contains 4 corners

– For a given node at level n

– Check if node should be split
● If yes:

– subdivide the node into 4 children of level n + 1 and recurse
● If no:

– If node is not a leaf, recursively merge it’s children
– If visible, append to the list of nodes to render

10

When should a node be split?

● When the following conditons are met:
– When its size is larger than a threshold value

● Project into screen space and compare size with target tle size (256 x 256)

– When it’s visible

11

When is a node visible?

● When the following conditons are met:
– It is a leaf node

– Not culled by the camera (within the view frustum)

– Not too far from the camera
● node’s distance to camera < camera’s distance to earth center

– If we assume earth center is (0, 0, 0)
● |node center – camera| < |(0, 0, 0) -1camera|
● |node center – camera| < |-1camera|

– Has its face normal facing us () v⃗iewVector∘ n⃗ormal>0

Adding details with imagery tles

13

Imagery

● For each geometric tle we need to fnd the matching imagery tles

● Various providers
– Bing Map

– Google Map

– Open Street Map

– ArcGis

– ...

● Various types of layers
– Satellite

– Map

– Heat

– ...

14

Imagery Layers

● Most imagery layers are provided in Web Mercator projecton

● Web Mercator assumes the Earth is a sphere,

but we used an Ellipsoid
– We need to reproject (let’s keep that for later)

● Most imagery tles are accessed using

“slippy map” addressing
– htp://someMapLayerProvider/zoom/x/y.png

– Zoom is usually between 0 and 18
● At zoom 0, 1 tle covers the whole world

● At zoom 1, 4 tles cover the whole world

● At zoom n, tles cover the whole world

– X goes from 0 to → 0 is -1180º, is 180º
– Y goes from 0 to → 0 is -185.0511º, is -185.0511º

2(2n)

2zoom−1

2zoom−1

2zoom−1

2zoom−1

0,0
2zoom−1

2zoom−1

-180º 180º

 -85.0511º

 85.0511º

(0, 0) (1, 0)

(1, 1)(0, 1)

http://someMapLayerProvider/zoom/x/y.png

15

Mapping Imagery Tiles to Geometric Tiles

● A geometric tles may map to several imagery tles

● For each geometric tle we need to:
– Find which imagery tles are required

– Load the imagery tles as textures

– Map these textures on the geometric tle’s vertces

16

Find the Imagery tles covering a geometric tle

● For each corner of the geometric tle:
– Retrieve geographic coordinates (lat, lon)

● Retrieve
– minimum longitude, lattude (lonMin, latMin)

– maximum longitude lattude (lonMax, latMax)

● Given a zoom level, convert
– (lonMax, latMax) → toSlippyTileId (xMax, yMax)

– (lonMin, latMin) → toSlippyTileId (xMin, yMin)

● We can then compute the number of tles

(xMax – xMin + 1) * (yMax – yMin + 1) Longitude

Latitude

-180° 180°

90°

-90°
(lonMin, latMin)

(lonMax, latMax)

17

Mapping Imagery Tiles to Geometric Tiles

● Given the Imagery Tiles required to cover a Geometric Tile

● We then compute the
– Ofset in X and Y

– The minimum and maximum extent of the tle

– its scale (node level / tle level)

● At render tme, for each geometric tle we

provide the GPU with the associated mapping

for up to 4 imagery tles

offsetX

offsetY

extentX

extentY

struct TextureInfo
{
 vec4 layerScaleOfsets[4];
 vec4 extentMinMax[4];
};

18

Vector Format Tiles

● Advantages
– Less data to transmit (binary, json, xml)

– Finer granularity: select only features you need

● Disadvantages
– Requires polygon assembly and triangulaton

– More preprocessing overhead

● Rendering:
– Opton 1: Assemble polygons, triangulate and convert to VBO

– Opton 2: Render polygons into Texture
● Allows to threat these tles just like Imagery tles

● Mapzen also provides tles in vector format

Terrain Elevaton

20

Terrain
● Elevaton is provided through elevaton textures

– Mapzen provides elevaton tles

– www.mapzen.com

● Reuses the same mapping as for imagery tles

● Elevaton tles are used as heighmaps to displace vertces of geometric
terrain tles
– Can be done in the Vertex Shader on the GPU

+

http://www.mapzen.com/

21

Mapzen Elevaton Formats

● 4 formats available
– Terrarium (.png)

– Normal (.png)

– GeoTIFF (.tf)

– Skadi (.hgt)

● Terrarium
– PNG tles

– 256x256 pixels

– 32 768 ofsets split into red, green blue channels

– Red and green represent 16 bits of integer

– Blue represents 8 bits of fracton

– Height = (red * 256 + green + blue / 256) – 32768

– Range of elevatons span from (-111 000 to 8 900 meters) → (rgb(85, 8, 0) to rgb(162, 198, 0)

22

Even more details

● We displace the height of each vertex of a geometric tle using the

heightmap
– But wait!!! We only have 4 vertces per tle :(

● We could subdivide more and regroup all the vertces

● Or we could tessellate on the GPU
– Each geometric tle is initally composed of 4 vertces

– We can use a tessellaton shader to increase that directly on the GPU
● Each outer edge is subdivided 8 tmes

● Each inner edge is subdivided 8 tmes

● → 64 quads per tle → 256 vertces

In practce

Drawing

25

Drawing

● How many draw calls do we need?
– One per geometric tle?

– One per imagery tle?

– Or maybe one draw call is enough?

26

Drawing

● Opton 1
– 1 draw call to render the whole scene

● Opton 2
– 1) 1 draw call to render the Cube with the textures applied on each face into a CubeMap texture

– 2) 1 draw call to render the Sphere (looking up textures into the CubeMap is easy)

– Probably costlier on the GPU than opton 1

● Both optons have low driver overhead

27

Building data to be Rendered

● Vertex Data (Geometric Tiles)
– OpenGL VBO built with Qt3DRender::QBufer, Qt3DRender::QAtribute

– For each renderable tle, retrieve its 4 corners and append them a QVector<QVector3D>
● Perform conversion so that vertex is relatve to eye (see vertex precision issues)

● Set the resultng data array on the Qt3DRender::QBufer with setData()

● Texture Data (Elevaton and Imagery)
– Texture2DArray with Qt3DRender::QTexture2DArray and Qt3DRender::QTextureImage

● Allows to group up to 2048 images within a single texture

● This allows to draw up to 2048 diferent texture images with a single draw call

● Mapping between Geometric Tiles and Imagery Tiles
– Uniform Bufer Object

● Array of structs on GPU memory that can be accessed by shaders

● Can easily be done by setng a Qt3DRender::QBufer on a Qt3DRender::QParameter

– For each tle vertex we associate an index
● We then use the index to lookup values into the Uniform Bufer Object within our shaders

28

● Precision Issues

● The GPU is good at handling single-1precision foats
– Given the range of values we are working with, single-1precision is not enough

● Vertex
● Causes Jiter

● Depth
● Causes Z-1Fightng

29

Vertex Precision: Rendering relatve to the eye

● Compute world vertex positon on the CPU using doubles

● Before uploading the vertces to the GPU
– Retrieve the eye positon E

– Transform vertex V so that it is relatve to the eye: Vrte = V – E

– Vrte can be converted to a single precision foat with a minimal loss of precision

● At render tme
– Transform the ViewMatrix into a viewMatrix relatve to the eye (removing the translaton vector)

mat4 viewMatrixRTE = viewMatrix;

viewMatrixRTE[3] = vec4(0.0, 0.0, 0.0, viewMatrix[3][3]);

– Perform usual model view projecton transformaton using viewMatrixRTE

gl_Positon = projectonMatrix * viewMatrixRTE * vec4(positon, 1.0);

30

Working around Depth Precision

● We only have 24 bits to store depth values

● Depth is 1 / z
– As z increases, precision decreases

– We have less precision for values which are far away

● We can work around that by adaptng

near and far plane of frustum

● Or we could use a Logarithmic Depth Bufer
– Allows a beter control of the distributon of depth values

0

1

znear far

d

31

Camera Zoom

● Sequence of step

● Each step the distance is half what it was at step n – 1

● Stop when reaching the surface

32

Code

● Code is available at htps://github.com/KDAB/qt3d-1examples

● About 1500 LOC of C++ and 500 LOC of QML

● Scripts to download tles provided
– You just need to register for a free Mapzen account

33

Possible Improvements

● Work out texture mapping

● Use a dedicated Qt3D aspect to perform the cube map generaton and imagery
tle selecton

● Perform smarter tessellaton on the GPU instead of the fxed number of
subdivisions for inner and outer edges

● Fill cracks between tles

● Use remote loading of textures (should already be possible but not tested)

● Load textures across several frames (right now it loads everything for the frame)

● Beter heuristcs to predict which tles to load

● Fine tune tle culling

34

Suggested Readings

● 3D Engine Design for Virtual Globes by Patrick Cozzi and Kevin Ring

● Rendering the Whole Wide World on the World Wide Web by Kevin Ring
– htps://cesium.com/presentatons/fles/Rendering%R20the%R20Whole%R20Wide%R20World%R20on%R20the%R20World%R

20Wide%R20Web.pptx

● Rendering Massive Terrains using Chunked Level of Detail Control by

Thatcher Ulrich
– htp://tulrich.com/geekstuf/sig-1notes.pdf

● Depth Precision Visualized by Nathan Reed
– htps://developer.nvidia.com/content/depth-1precision-1visualized

https://cesium.com/presentations/files/Rendering%20the%20Whole%20Wide%20World%20on%20the%20World%20Wide%20Web.pptx
https://cesium.com/presentations/files/Rendering%20the%20Whole%20Wide%20World%20on%20the%20World%20Wide%20Web.pptx
http://tulrich.com/geekstuff/sig-notes.pdf

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

