
KDAB | the Qt, OpenGL and C++ experts 1

Our first Qt 3D whitepaper helped us
understand the structure of a Qt 3D program
– the nature of entities, components, and
aspects, and how those are incorporated into
the scene graph and frame graph. With those
basics under our belt, we'll now tackle how to
incorporate those elements into a functioning
program by examining how to receive user
input and how to animate objects in a scene.

Qt 3D input

Let's start with the most basic need for any non-
trivial program: – user input. If your 3D program
has a 2D overlay with buttons or controls, you
can manage those widgets with the same APIs
you would use for any standard 2D app. But
how do you know where a click or touch occurs
within the 3D scene?

That's done via the QObjectPicker class, which
uses ray-cast picking. This technique traces the
path of an imaginary ray from the screen

The ability to create 3D applications is a skillset that is increasingly
in demand as it plays a crucial role in advanced UX design, virtual
reality, game development, and more. While developing a modern
3D program requires many disparate skills, there are frameworks
that help the developer stitch it all together. Qt 3D is one that
we recommend.

Qt 3D Basics
Paul Lemire

Part 2: Input and Animation

N
ov

em
be

r
28

KDAB | the Qt, OpenGL and C++ experts 2

To see if the user is interacting with your 3D object,
add a QObjectPicker to your QEntity and catch one of
the available signals

pixel back into the 3D model. Qt 3D returns
whatever object the ray intersects as a match.
The algorithm is very similar to ray tracing in
graphics rendering, except to find the object
being pointed at we don't need to know the
color, material, or lighting for the intersected
point, we only need to know the object that
the ray is intersecting.

To see if the user is interacting with your 3D
object, add a QObjectPicker to your QEntity
and catch one of the available signals. The
signals pressed(), released(), and clicked()
will be emitted when the program detects
a click or part of a click. For a click-and-drag
event, make sure that dragEnabled is true
and that you’re using the moved() signal. All
of these signals provide a QPickEvent object
that describes the intersection of the ray cast
with the most common interpretations of
the coordinate – either position (for screen
space), localIntersection (for model space) or
worldIntersection (for world space).

Using mice

The pressed/released/clicked signals in
QObjectPicker naturally work with a mouse.
But what if you want to see if the mouse is over
your object? Simple: set hoverEnabled to true,
and catch entered() and exited() signals. And
if you just need a simple state-based check to
see if the mouse is pointing to your entity, check
that the containsMouse property equals true.

Here’s a QML example to see mouse interaction
techniques in action.

Code sample 1: PickableEntity.qml,
catching mouse events

import Qt3D.Core 2.0
import Qt3D.Render 2.0
import Qt3D.Extras 2.0
import QtQuick 2.0

Entity {
 id: root
 signal pressed(var event)
 signal clicked(var event)
 signal released(var event)
 signal entered()
 signal exited()

 �property alias position: transform.	
	 translation

 property color hoveredColor: "orange"
 property color pressedColor: "brown"
 �readonly property bool containsMouse:

	 objectPicker.containsMouse
 �readonly property bool isPressed:

	 objectPicker.pressed

 property GeometryRenderer mesh

 ObjectPicker {
 id: objectPicker
 hoverEnabled: true
 onPressed: root.pressed(pick)
 onReleased: root.released(pick)
 onEntered: root.entered()
 onExited: root.exited()
 onClicked: root.clicked(pick)
 }

 PhongMaterial {
 id: material
 �diffuse: objectPicker.pressed

	 ? pressedColor
	 : objectPicker.containsMouse 	
	 ? hoveredColor

 : "red"
 }

 components: [mesh, material, 		
	 objectPicker]
}

KDAB | the Qt, OpenGL and C++ experts 3

Code sample 2: main.qml, reacting to
mouse events

import Qt3D.Core 2.0
import Qt3D.Render 2.0
import Qt3D.Extras 2.0

DefaultSceneEntity {
 id: scene

 SphereMesh {
 id: sphereMesh
 rings: 30
 slices: 30
 }

 PickableEntity {
 mesh: sphereMesh
 position.x: -2

 pressedColor: "blue"
 hoveredColor: "lightBlue"

 �onClicked: console.log("Clicked
	 sphere 1")

 }

 PickableEntity {
 mesh: sphereMesh
 position.x: 2

 pressedColor: "green"
 hoveredColor: "lightGreen"

 �onClicked: console.log("Clicked
	 sphere 2")

 }

 camera: Camera {
 position: Qt.vector3d(0, 16, 11)
 viewCenter: Qt.vector3d(0, 0, 0)
 }
}

Picking objects isn't the only thing you can do
with a mouse. The mouse position can be used
as input for tasks like rotating the camera angle
or translating a scene around. Or when you
want your application to react directly to mouse
button states. In these cases, you'd access
a QMouseDevice directly. To catch events
from the QMouseDevice, you also need a
QMouseHandler. Here's a very simple app
that does nothing but catch mouse events
and print them to the console.

Code sample 3: creating a mouse handler

MouseDevice {
 id: mouseDevice
 }

Entity {
 components: [
 MouseHandler {
 sourceDevice: mouseDevice
 onReleased: {
 switch (mouse.button) {
 case Qt.LeftButton:
 �console.log("Left mouse

	 click");
 break;
 case Qt.RightButton:
 �console.log("Right

	 mouse click");
 break;
 }
 }
 onPositionChanged: {
 �console.log("Mouse moved 	

	 (",mouse.x,
	 ",",mouse.y,")")

 }
 }
]
}

Use QMouseDevice to get input for tasks like rotating
the camera angle, translating a scene around, or reacting
to mouse button states

KDAB | the Qt, OpenGL and C++ experts 4

Using keyboards

Now you'll note that we've only covered the
mouse here – what about other forms of input?
Input devices in Qt 3D are handled via the
class QAbstractPhysicalDevice. There are two
classes provided by default (QKeyboardDevice
and QMouseDevice) that inherit from
QAbstractPhysicalDevice.

We've already covered the basics of the mouse,
so a brief example on keyboards is next. Here
are the bare necessities.

Code sample 4: handling keyboard input

KeyboardDevice {
 id: keyboardDevice
}

Entity {
 components: [
 KeyboardHandler {
 sourceDevice: keyboardDevice
 	 focus: true
 �onUpPressed: box.position.z

	 -= 0.5
 �onDownPressed: box.position.z

	 += 0.5
 �onLeftPressed: box.position.x

	 -= 0.5
 �onRightPressed: box.position.x

	 += 0.5
 }
]
}

How do you allow the key presses in the above
example to smoothly rotate the object instead
of introducing jerky motion? For that, you'll need
an accumulator – a class that tracks an input
device's movement signals to smoothly deliver
appropriate acceleration and velocity cues to
an application. Any time you're managing the
rotation or translation of objects, you'll probably
want to incorporate an accumulator.

Unfortunately, we don't cover accumulators
in this whitepaper due to space constraints.
To get more information about accumulators,
managing touchscreens, or interfacing with
other non-default devices – among many other
topics – refer to the documentation or take one
of our Qt 3D training courses.

Qt 3D animation

In the last step of our previous Qt 3D
whitepaper, we used Qt Quick animations to
pulse the width of the lines of our trefoil knot
example. Qt Quick animation can also be used
to implement much more complex animations
– changing object position, size, or other
properties. So, is that all we need to know about
animation?

Hardly. One problem with Qt Quick animation is
that it's executed on the main thread. This stalls
other tasks on the main event loop. It doesn't
use our modern multi-core and hyper-threaded
CPUs effectively. Another problematic aspect
of using Qt Quick to animate Qt 3D is that
animation changes aren't synchronized with the
engine frame rate, which can cause shearing
or other visual glitches. Not to mention that if
you're using Qt Quick only for animation, you're
pulling in a lot of logic and dependencies that
you don’t really need.

The solution is to use Qt3DAnimation::
QAnimationAspect. This provides the APIs
necessary to map your animation in a Qt
3D-approved way. QtAnimationAspect inherits
from AbstractAnimationClip. Like a movie
clip, an AnimationClip provides the necessary
manipulation of object properties through a
series of key frames. The key frames define
properties such as position, size, rotation, or
color and specify their values at the beginning

Qt Quick animation changes aren’t synchronized with
the engine frame rate, which can cause shearing or
other visual glitches

https://www.kdab.com/software-services/scheduled-training/programming-qt-3d-training/

KDAB | the Qt, OpenGL and C++ experts 5

and ending of the animation, as well as any
important transitions in-between. The bundling
of the property type and its values over time
is called a channel and the channels (stored
in AnimationClip.clipData) dictate how
properties are smoothly interpolated between
key frames throughout the duration of the
animation.

At this time, AnimationClipData instances can
only be created in C++, so your QML code will
need some extra C++ helper routines. Let's look
at an example that defines the movement of an
object's position.

Code sample 5: creating position-based
animation data

auto data = Qt3DAnimation::
	 QAnimationClipData();

// Add a channel for a Location animation
auto location = Qt3DAnimation::
	 QChannel(QLatin1String("Location"));

auto locationX =
	 Qt3DAnimation::QChannelComponent
	 (QLatin1String("Location X"));
locationX.appendKeyFrame(Qt3DAnimation::
	 QKeyFrame({0.0f, -2.0f},
	 {-1.0f, 0.0f},{1.0f, 0.0f}));
locationX.appendKeyFrame(Qt3DAnimation::
	 QKeyFrame({2.45f, 2.0f},
	 {1.45f, 5.0f},{3.45f, 5.0f}));

auto locationY =
	 Qt3DAnimation::QChannelComponent
	 (QLatin1String("Location Y"));
locationY.appendKeyFrame(Qt3DAnimation::
	 QKeyFrame({0.0f, 0.5f},
	 {-1.0f, 0.5f},{1.0f, 0.5f}));

auto locationZ =
	 Qt3DAnimation::QChannelComponent
	 (QLatin1String("Location Z"));
locationZ.appendKeyFrame(Qt3DAnimation::
	 QKeyFrame({0.0f, 0.0f},
	 {-1.0f, 0.0f},{1.0f, 0.0f}));

location.appendChannelComponent(locationX);
location.appendChannelComponent(locationY);
location.appendChannelComponent(locationZ);

data.appendChannel(location);

A clip contains several channels – one for each
component being manipulated in the animation
– and each channel contains the array of key
frames that specify the animation. Each key
frame consists of three 2D points, a position,
and two control points. Multiple key frames
together define a Bezier curve. Although you
can use different interpolation algorithms,
we'll assume Bezier curves for the sake of this
explanation. The x-axis of the curve represents
time – the time of the animation – while the
y-axis represents the value of the parameter.
In the position animation code sample above,
we have a single point for y and z, so those
coordinates won't change. However, the x
coordinate uses a curve with two points (two
key frames), so when we do the animation, that
parameter will vary according to the height of
the parameter curve.

The following screenshot from Blender
shows how animation curves are defined.
Thankfully, Qt 3D shares the same method
of defining animation, so we can use it for a
visual illustration that's easier to understand
than a code snippet. (That similarity is not by
mere chance, as Qt 3D was designed to be
compatible with Blender.)

There are three curves being created in the
application that describe a 3D point's position
with x (red), y (green), and z (blue). Each black
dot is associated with two control points – the
key frame – that the Blender UI hides unless
you're editing them. The control points are
visible on the blue z curve, where the point is
highlighted in white. The control points are the
two hollow points connected to the white dot

Qt 3D was designed to be compatible with Blender
and shares the same method of defining animation
curves

KDAB | the Qt, OpenGL and C++ experts 6

via pink lines. The red x parameter has three
key frames, while the green y and blue z each
have two key frames – but you can use as many
key frames as you need to smoothly define the
motion of your object. The vertical orange line
represents time: as it sweeps from left to right,
the position of each curve at that position will
control the associated parameter in the model.

Position animation curves in Blender

There isn't anything particularly special about
these curves being associated with x, y, and z
parameters in this screenshot. They represent
the varying value of a parameter over time
and could also represent any other parameter
change – such as a color transformation with
red, green, and blue components – with the
same key frame data. Let's see what changes
are needed in order to animate an object's
color.

Code sample 6: creating color-based
animation data

auto data = Qt3DAnimation::
	 QAnimationClipData();

// Add a channel for a Color animation
auto color = Qt3DAnimation::
	 QChannel(QLatin1String("Color"));

auto colorR = Qt3DAnimation::
	 QChannelComponent(QLatin1String
	 ("Color R"));
colorR.appendKeyFrame(Qt3DAnimation::
	 QKeyFrame({0.0f, 0.05f},
	 {-1.0f, 0.0f},{1.0f, 0.0f}));
colorR.appendKeyFrame(Qt3DAnimation::
	 QKeyFrame({2.45f, 1.0f},
	 {1.5f, 0.0f},{3.45f, 5.0f}));

auto colorG = Qt3DAnimation::
	 QChannelComponent(QLatin1String
	 ("Color G"));
colorG.appendKeyFrame(Qt3DAnimation::
	 QKeyFrame({0.0f, 0.05f},
	 {-1.0f, 0.0f},{1.0f, 0.0f}));

auto colorB = Qt3DAnimation::
	 QChannelComponent(QLatin1String
	 ("Color B"));
colorB.appendKeyFrame(Qt3DAnimation::
	 QKeyFrame({0.0f, 0.05f},
	 {-1.0f, 0.0f}, {1.0f, 0.0f}));

color.appendChannelComponent(colorR);
color.appendChannelComponent(colorG);
color.appendChannelComponent(colorB);

data.appendChannel(color);

Again, the key frame positions and control
points define a curve that determines the
values animating each parameter. It's just that
this time the parameters are the red, green,
and blue components of our image's color.

Key frame positions and control points define a curve,
which determines the values animating each parameter

KDAB | the Qt, OpenGL and C++ experts 7

Last but not least, what if you want to rotate the
object? That's done by creating a set of channels
for the key frame animation for a quaternion
rotation.

Code sample 7: creating rotation-based
animation data

auto data = Qt3DAnimation::
	 QAnimationClipData();

// Add a channel for a Rotation animation
auto rotation =
	 Qt3DAnimation::QChannel
	 (QLatin1String("Rotation"));

auto rotationW =
	 Qt3DAnimation::QChannelComponent
	 (QLatin1String("Rotation W"));
rotationW.appendKeyFrame(Qt3DAnimation::
	 QKeyFrame({0.0f, 1.0f},
	 {-1.0f, 1.0f},{1.0f, 1.0f}));
rotationW.appendKeyFrame(Qt3DAnimation::
	 QKeyFrame({2.45f, 0.0f},
	 {1.5f, 0.0f}, {3.45f, 0.0f}));

auto rotationX =
	 Qt3DAnimation::QChannelComponent
	 (QLatin1String("Rotation X"));
rotationX.appendKeyFrame(Qt3DAnimation::
	 QKeyFrame({0.0f, 0.0f},
	 {-1.0f, 0.0f}, {1.0f, 0.0f}));

auto rotationY =
	 Qt3DAnimation::QChannelComponent
	 (QLatin1String("Rotation Y"));
rotationY.appendKeyFrame(Qt3DAnimation::
	 QKeyFrame({0.0f, 0.0f},
	 {-1.0f, 0.0f}, {1.0f, 0.0f}));

auto rotationZ =
	 Qt3DAnimation::QChannelComponent
	 (QLatin1String("Rotation Z"));
rotationZ.appendKeyFrame(Qt3DAnimation::
	 QKeyFrame({0.0f, 0.0f},
	 {-1.0f, 0.0f}, {1.0f, 0.0f}));
rotationZ.appendKeyFrameQt3DAnimation::
	 QKeyFrame({2.45f, -1.0f},
	 {1.5f, -1.0f}, {3.45f, -1.0f}));

rotation.appendChannelComponent(rotationW);
rotation.appendChannelComponent(rotationX);
rotation.appendChannelComponent(rotationY);
rotation.appendChannelComponent(rotationZ);

data.appendChannel(rotation);

If you're not new to 3D development, you'll
know that a quaternion specifies the rotational
angle of the object. Quaternions are great little
bits of math that perfectly implement three-
dimensional rotations. If you need a primer,
there is the math-heavy Wikipedia article, but
you can also try some coder friendly summaries
here and here. (The next time you want to
impress people at a party, you can tell them
you're doing 3D math with four-dimensional
complex numbers.)

Despite this math fun, it's not that easy to
maintain data directly inline like this. That's
especially the case if you've got designers
or artists who are providing the models and
animation data, or if you're defining models with
any more than trivial complexity. You'll want to
use a 3D modelling tool like Blender or Adobe
3ds Max to build your objects and scenes; this
will be able to help you test your animations
within the tool. That's when you'll need the
AnimationClipLoader class, which can load key
frame clip data from a JSON file. And, of course,
a plug-in is available for Blender that exports
animations in the required format.

There's also another option to consider. We've
created a tool called Kuesa that helps bridge
the gap between designer and developer.
Kuesa loads scenes straight out of Blender or
Adobe 3ds Max into Qt 3D without requiring any
intermediate translation steps and preserves
the geometry, materials, and animations so
you don't have to mess around with JSON or
hardcoding your scenes.

Kuesa loads scenes straight out of Blender or Autodesk
3ds Max into Qt 3D without requiring intermediate
translation steps

https://en.wikipedia.org/wiki/Quaternion
http://www.3dkingdoms.com/weekly/weekly.php?a=36
https://www.cprogramming.com/tutorial/3d/quaternions.html
https://www.kdab.com/kuesa

KDAB | the Qt, OpenGL and C++ experts 8

About the KDAB Group

The KDAB Group is the world’s leading software
consultancy for architecture, development and
design of Qt, C++ and OpenGL applications
across desktop, embedded and mobile
platforms. KDAB is the biggest independent
contributor to Qt and is the world’s first ISO
9001 certified Qt consulting and development
company. Our experts build run-times, mix

native and web technologies, solve hardware
stack performance issues and porting problems
for hundreds of customers, many among
the Fortune 500. KDAB’s tools and extensive
experience in creating, debugging, profiling and
porting complex applications help developers
worldwide to deliver successful projects.
KDAB’s trainers, all full-time developers, provide
market leading, hands-on, training for Qt,
OpenGL and modern C++ in multiple languages.

www.kdab.com

© 2018 the KDAB Group. KDAB is a registered trademark of the KDAB Group. All other trademarks belong to their respective owners.

Summary

We've only room to scratch the surface of Qt 3D
input and animation here. For in-depth learning
and the docs to fill in the missing gaps, follow up
with a training course. And check out the many
sample demos that ship with Qt Creator.

There's still more to cover in our Qt 3D
whitepaper series. Now that we've touched on
the basics, we can take look at how Qt 3D can
handle specialized rendering techniques in our
next instalment.

http://www.kdab.com/
https://www.kdab.com/software-services/scheduled-training/programming-qt-3d-training/

