
Integrating OpenGL with
Qt Quick 2 Applications

Jim Albamont, Senior Software Engineer at KDAB



p.2

Introduction to the Qt Quick 2 renderer (page 3)

OpenGL underlays and overlays (page 11)

Custom OpenGL-based items (page 19)

Controlling the rendering: QQuickRenderControl (page 27)

The Scene Graph API (page 34)



p.3

Introduction to the Qt Quick 2 renderer

OpenGL underlays and overlays

Custom OpenGL-based items

Controlling the rendering: QQuickRenderControl

The Scene Graph API



p.4

Framework for modern 2D UIs
Scene defined in QML
Lots of QML elements out of the box
Extensible using C++

Rendering based on OpenGL
Smooth animations
Special effects for "free"



p.5

Renders the contents of a scene graph
Data structure containing the "visual representation" of the Qt Quick
elements in a scene

The scene graph is a tree of nodes, specifying
Geometry (i.e. the "shape")
Material (i.e. "how does it look like")
Transformations
Clipping
etc.



p.6

Rendering is multithreaded on most platforms
OpenGL calls issued on a dedicated render thread != main GUI thread
Main thread free to go while render thread submit works to the GPU
Render thread free to go in case the GUI thread is stuck

Explicit main thread / render thread synchronization step
During which the scene graph tree for the items in the scene gets
created / updated



p.7

Rendering is requested with QQuickItem/QQuickWindow::update()

After "some time" the render thread synchronizes with the GUI thread
GUI thread gets stopped
Render thread calls QQuickItem::updatePaintNode() on all dirty items
to retrieve each item's tree of scene graph nodes

GUI thread unblocked (free to continue its CPU tasks)

Render thread analyzes the scene graph + submits work to the GPU

class://QQuickItem/QQuickWindow::update
class://QQuickItem::updatePaintNode


p.8



p.9

The renderer (through QQuickWindow) emits many signals while it proceeds
through the synchronization

We can connect slots to those signals and perform extra drawing using
OpenGL

class://QQuickWindow


p.10



p.11

Introduction to the Qt Quick 2 renderer

OpenGL underlays and overlays

Custom OpenGL-based items

Controlling the rendering: QQuickRenderControl

The Scene Graph API



p.12

QQuickWindow::beforeSynchronizing()
Emitted before calling updatePaintNode on the items; GUI thread blocked

QQuickWindow::beforeRendering()
Emitted after the sync, but before any drawing by the Qt Quick renderer;
GUI thread running again

QQuickWindow::afterRendering()
Emitted after the Qt Quick renderer has done, before the frame is
swapped

QQuickWindow::frameSwapped()
Emitted after the swap buffer call

class://QQuickWindow::beforeSynchronizing
class://QQuickWindow::beforeRendering
class://QQuickWindow::afterRendering
class://QQuickWindow::frameSwapped


p.13

QQuickWindow::sceneGraphInitialized()
Emitted when the scene graph is initialized. The OpenGL context will be
current

QQuickWindow::sceneGraphInvalidated()
Emitted when the scene graph has been destroyed; the OpenGL context
is going to be destroyed soon

class://QQuickWindow::sceneGraphInitialized
class://QQuickWindow::sceneGraphInvalidated


p.14

Connect to these signals to implement underlays and overlays
Cross thread => direct connection required

In the slots do your custom OpenGL calls
The OpenGL context used by the renderer will be available at that point



p.15



p.16

By default the renderer clears the color buffer, wiping out underlays
Disable the automatic clearing via
QQuickWindow::setClearBeforeRendering(false)

The OpenGL context used by the Qt Quick renderer might be destroyed in
certain occasions, f.i. when the window is minimized

In your rendering code, connect to the destruction signals from the
OpenGL context and clear up al OpenGL resources, recreating them
when the context gets recreated
Or just disable this behavior:
QQuickWindow::setPersistentOpenGLContext(true)

class://QQuickWindow::setClearBeforeRendering
class://QQuickWindow::setPersistentOpenGLContext


p.17

The Qt Quick renderer tracks OpenGL state and does not like changes under
its nose

Be sure to reset any state that you change in your rendering code to
whatever it was before

Or: call QQuickWindow::resetOpenGLState() to reset the OpenGL state
before returning from your custom slots

class://QQuickWindow::resetOpenGLState


p.18

Beware of accessing state from the main thread without proper
synchronization!

The main thread is unblocked when QQuickWindow::beforeRendering()
and QQuickWindow::afterRendering() are emitted

Copy any render-specific information when
QQuickWindow::beforeSynchronizing() is emitted
And/or protect all accesses to shared state with mutexes

class://QQuickWindow::beforeRendering
class://QQuickWindow::afterRendering
class://QQuickWindow::beforeSynchronizing


p.19

Introduction to the Qt Quick 2 renderer

OpenGL underlays and overlays

Custom OpenGL-based items

Controlling the rendering: QQuickRenderControl

The Scene Graph API



p.20

QQuickItem is the base class of all visible elements in a Qt Quick 2 scene
Convenience common properties, event handlers for input, anchor
sizing, etc.

Create a subclass and expose it to the QML engine
Using qmlRegisterType
The renderer will call QQuickItem::updatePaintNode() to retrieve the
subtree of the scene graph for this item

Create instances in QML as usual

class://QQuickItem
class://qmlRegisterType
class://QQuickItem::updatePaintNode


p.21

Will come back to this at the end



p.22

Convenience QQuickItem subclasses are available, as playing with the
scene graph is no easy task

QQuickFramebufferObject made specifically for integrating custom
OpenGL rendering through a FBO

So that we don't touch the complexity of the Qt Quick scene graph API

class://QQuickItem
class://QQuickFramebufferObject


p.23

A convenience subclass to wrap custom OpenGL code in a QML element

Custom OpenGL rendering redirected offscreen into a FBO

Creates for us the scene graph nodes needed for rendering the FBO
contents into the scene

Subclass QQuickFramebufferObject and
QQuickFramebufferObject::Renderer

class://QQuickFramebufferObject
class://QQuickFramebufferObject::Renderer


p.24

Subclass QQuickFramebufferObject::Renderer
This is the class that actually deals with the custom rendering

Override render() to draw
Called from the render thread
FBO already set up when called; customize FBO creation by overriding
::createFramebufferObject()

Override synchronize(QQuickFramebufferObject *) to synchronize the
rendering state with the properties of the QML element

Called during synchronization, GUI thread stopped

class://QQuickFramebufferObject::Renderer
class://QQuickFramebufferObject::Renderer::render
class://::createFramebufferObject
class://QQuickFramebufferObject::Renderer::synchronize


p.25

Subclass QQuickFramebufferObject
This is the class that we expose to QML
Add properties, signals, etc.

Override createRenderer() to create our custom renderer
Called from the render thread during synchronization

Expose the QQuickFramebufferObject subclass to QML
qmlRegisterType

Use it from QML

class://QQuickFramebufferObject
class://QQuickFramebufferObject::createRenderer
class://QQuickFramebufferObject
class://qmlRegisterType


p.26



p.27

Introduction to the Qt Quick 2 renderer

OpenGL underlays and overlays

Custom OpenGL-based items

Controlling the rendering: QQuickRenderControl

The Scene Graph API



p.28

In some scenarios we don't want Qt Quick to be in charge of the rendering

We may want to
Use a custom/already existing OpenGL context
Decide when to synchronize the scene graph
Decide when to redraw the Qt Quick contents

QQuickRenderControl to the rescue

class://QQuickRenderControl


p.29

Use QQuickRenderControl to manually drive Qt Quick rendering

Total control over
Scene graph and OpenGL initialization
Synchronization
Rendering
Threading
Event handling

class://QQuickRenderControl


p.30

Create a QQuickWindow and a QQuickRenderControl
Needs an invisible QQuickWindow for historical reasons
Do not actually show() nor create() the window

Connect to QQuickRenderControl signals
See next slides

Initialize the control with initialize(QOpenGLContext *)
OpenGL context created by us
Or possibly adopted using QOpenGLContext::setNativeHandle(), etc.

class://QQuickWindow
class://QQuickRenderControl
class://QQuickWindow
class://QQuickWindow::show
class://QQuickWindow::create
class://QQuickRenderControl
class://QQuickRenderControl::initialize
class://QOpenGLContext::setNativeHandle


p.31

When QQuickRenderControl::sceneUpdated() is emitted
Call QQuickRenderControl::polish() from the GUI thread
Block the GUI thread and call QQuickRenderControl::sync() from the
render thread
... in a single thread scenario, just call sync()

When QQuickRenderControl::renderRequested() is emitted
Call QQuickRenderControl::render() from the render thread (from the
GUI thread if single threaded)

class://QQuickRenderControl::sceneUpdated
class://QQuickRenderControl::polish
class://QQuickRenderControl::sync
class://QQuickRenderControl::sync
class://QQuickRenderControl::renderRequested
class://QQuickRenderControl::render


p.32

To let Qt Quick handle input events (mouse, keyboard, ...) simply forward
them to the QQuickWindow

QCoreApplication::sendEvent(window, event)

class://QQuickWindow
class://QCoreApplication::sendEvent


p.33



p.34

Introduction to the Qt Quick 2 renderer

OpenGL underlays and overlays

Custom OpenGL-based items

Controlling the rendering: QQuickRenderControl

The Scene Graph API



p.35

A series of classes holding visual data
Merely "containers", they don't draw themselves

Renderer analyzes them and submits work to the GPU
Many possibilities for optimizations
Batching, maybe instancing in the future, ...



p.36

QQuickItem::updatePaintNode() returns a tree of QSGNodes containing the
visual representation for that item

QSGNode base class for actual containers
QSGGeometryNode
QSGTransformNode
QSGOpacityNode
etc.

QSGGeometryNode is not a QObject

class://QQuickItem::updatePaintNode
class://QSGNode
class://QSGNode
class://QSGGeometryNode
class://QSGTransformNode
class://QSGOpacityNode
class://QSGGeometryNode
class://QObject


p.37



p.38

Although public API, many bits and bolts undocumented or
underdocumented

Check the source code of built-in elements to figure out their scene graph
implementation

Use GammaRay on built-in elements



p.39



p.40

Questions?



Thank you!
jim.albamont@kdab.com - www.kdab.com


