
Interacting	with	3D	Content

Mike	Krus,	Senior	Software	Engineer	at	KDAB



p.2

Why	this	talk?

What	is	Qt3D?

Handling	input	devices

Adding	controls

Mixing	with	traditional	UIs

p.3

A	third	input	handling	stack	:(

A	third	dimension

No	predefined	controls

No	user	experience

p.4

It	is	not	about	3D!

Multi-purpose,	not	just	a	game	engine

Soft	real-time	simulation	engine

Designed	to	be	scalable

Extensible	and	flexible

p.5

The	scene	graph	provides	the	spatial	representation	of	the	simulation
Qt3DCore::QEntity:	what	takes	part	in	the	simulation
Qt3DCore::QTransform:	where	it	is,	what	scale	it	is,	what	orientation	it
has

Hierarchical	transforms	are	controlled	by	the	parent/child	relationship
Similar	to	QWidget,	QQuickItem,	etc.

Create	objects	to	be	rendered
Qt3DRender::QGeometryRenderer's	geometry	property	specifies	the
shape
The	Qt3DRender::QMaterial	component	provides	a	surface	appearance
Subclasses	of	Qt3DRender::QAbstractTexture	provide	different	types
of	texture

If	the	scene	is	rendered,	we	need	a	point	of	view	on	it
This	is	provided	by	Qt3DRender::QCamera

class://Qt3DCore::QEntity
class://Qt3DCore::QTransform
class://QWidget
class://QQuickItem
class://Qt3DRender::QGeometryRenderer
class://Qt3DRender::QMaterial
class://Qt3DRender::QAbstractTexture
class://Qt3DRender::QCamera


p.6

Good	practice	having	root	Entity	to	represent	the	scene

One	Entity	per	"object"	in	the	scene

Objects	given	behavior	by	attaching	component	subclasses

For	an	Entity	to	be	drawn	it	needs:
A	mesh	geometry	describing	its	shape
A	material	describing	its	surface	appearance

Demo	qt3d/ex-hellodonut-qml

p.7

QML	API	is	a	mirror	of	the	C++	API

C++	class	names	like	the	rest	of	Qt

QML	element	names	just	don't	have	the	Q	in	front
Qt3DCore::QNode	vs	Node
Qt3DCore::QEntity	vs	Entity
...

p.8

High	level	picking	provided	by	Qt3DRender::QObjectPicker	component
Implicitly	associated	with	mouse	device
Uses	ray-cast	based	picking

Qt3DRender::QObjectPicker	emits	signals	for	you	to	handle:
pressed(pick),	released(pick),	clicked(pick)
moved(pick)	-	only	when	dragEnabled	is	true
entered(),	exited()	-	only	when	hoverEnabled	is	true

The	containsMouse	property	provides	a	more	declarative	alternative	to
entered(),	exited()

The	pick	parameter	of	the	signals	is	a	Qt3DRender::QPickEvent
position	in	screen	space
localIntersection	in	model	space
worldIntersection	in	world	space

Demo	qt3d/ex-object-picker-qml

p.9

RenderSettings	is	a	Component	allowing	to	control	the	render	aspect

Only	one	instance	is	allowed

It	is	generally	set	on	the	root	Entity	of	the	scene

It	allows	to	control	picking	via	the	pickingSettings	grouped	property
By	default	it	uses	bounding	sphere	volume	picking
   (PickingSettings.BoundingVolumePicking)
Some	scenes	require	the	more	expensive	triangle	picking
   (PickingSettings.TrianglePicking)
As	of	5.10,	also	pick	lines	and	points
This	changes	the	type	of	event	received	in	ObjectPicker	handlers

qmlElement://Entity
qmlElement://Entity
qmlElement://Entity
class://Qt3DCore::QNode
qmlElement://Node
class://Qt3DCore::QEntity
qmlElement://Entity
class://Qt3DRender::QObjectPicker
class://Qt3DRender::QObjectPicker
class://Qt3DRender::QPickEvent
qmlElement://RenderSettings
qmlElement://Component
qmlElement://Entity
qmlElement://ObjectPicker


p.10

Light	up	each	box	when	the	mouse	hovers	over	it

Give	focus	by	clicking	on	a	box

Focused	box	should	appear	bigger

Optional:
Move	focused	box	around	using	the	object	picker

Demo	qt3d/sol-moving-boxes-qml-step1

p.11

To	handle	input	we	first	need	to	generate	input	events

Subclasses	of	Qt3DInput::QAbstractPhysicalDevice	represent	input
devices

Qt3DInput::QKeyboardDevice
Qt3DInput::QMouseDevice
Others	can	be	added	later

On	it's	own	a	device	doesn't	do	much

p.12

Physical	devices	need	to	be	partnered	with	an	input	handler

Qt3DInput::QKeyboardHandler	and	Qt3DInput::QMouseHandler	are	both
components
Attach	them	to	an	entity
Associate	a	physical	device	with	its	handler	by	the	handler's
sourceDevice	property
The	handler	then	receives	events	from	the	physical	device
The	Qt3DInput::QKeyboardHandler	only	receives	events	if	its	focus
property	is	true

Both	handlers	expose	signals	that	are	emitted	in	response	to	events

p.13

1 import	Qt3D.Input	2.0
2 ...
3
4 MouseDevice	{
5     id:	mouseDevice
6 }
7
8 MouseHandler	{
9     sourceDevice:	mouseDevice
10
11     onReleased:	{
12         switch	(mouse.button)	{
13         case	Qt.LeftButton:
14             box.textureBaseName	=	"pattern_10";
15             break;
16         case	Qt.RightButton:
17             box.textureBaseName	=	"pattern_09";
18             break;
19         }
20     }
21 }

Demo	qt3d/ex-mouse-handler-qml

class://Qt3DInput::QAbstractPhysicalDevice
class://Qt3DInput::QKeyboardDevice
class://Qt3DInput::QMouseDevice
class://Qt3DInput::QKeyboardHandler
class://Qt3DInput::QMouseHandler
class://Qt3DInput::QKeyboardHandler


p.14

1 import	Qt3D.Input	2.0
2 ...
3
4 KeyboardDevice	{
5     id:	keyboardDevice
6 }
7
8 KeyboardHandler	{
9     sourceDevice:	keyboardDevice
10     focus:	true
11     onUpPressed:	box.position.z	-=	0.5
12     onDownPressed:	box.position.z	+=	0.5
13     onLeftPressed:	box.position.x	-=	0.5
14     onRightPressed:	box.position.x	+=	0.5
15 }

Demo	qt3d/ex-keyboard-handler-qml

p.15

Give	focus	to	a	box	using	tab

Move	the	box	on	the	plane	using	the	arrows

Optional:
Allow	to	rotate	boxes	on	their	Y	axis	with	page	up/down

Demo	qt3d/sol-moving-boxes-qml-step2

p.16

Physical	devices	provide	only	discrete	events

Hard	to	use	them	to	control	a	value	over	time

Logical	device	provides	a	way	to:
Have	an	analog	view	on	a	physical	device
Aggregate	several	physical	devices	in	a	unified	device

p.17

Qt3DInput::QAction	provides	a	binary	value

It	is	activated	by	some	input,	can	be:
A	single	button	input	with	Qt3DInput::QActionInput
A	simultaneous	combination	of	button	inputs	with
Qt3DInput::QInputChord
A	sequence	of	button	inputs	with	Qt3DInput::QInputSequence

When	the	action	state	changes	the	active	property	is	toggled

Demo	qt3d/ex-logical-input-qml

class://Qt3DInput::QAction
class://Qt3DInput::QActionInput
class://Qt3DInput::QInputChord
class://Qt3DInput::QInputSequence


p.18

Qt3DInput::QAxis	provides	an	analog	value	between	-1	and	1

It	varies	over	time	when	some	input	is	generated,	can	be:
When	a	physical	axis	varies	with	Qt3DInput::QAnalogAxisInput
While	a	button	is	pressed	with	Qt3DInput::QButtonAxisInput

When	the	axis	state	changes	the	value	property	changes

Demo	qt3d/ex-logical-axes-qml

p.19

The	keyboard	control	of	the	boxes	is	still	step	by	step

Improve	the	code	so	that	the	boxes	move	and	rotate	smoothly	when
controlled	with	the	keyboard

Demo	qt3d/sol-moving-boxes-qml-step3

p.20

Obviously	using	an	Axis

But	we	got	only	the	axis	position...

Force	us	to	use	imperative	code	executed	in	the	main	thread
Typically	increment	a	value	based	on	the	axis	position
Needs	to	sample	over	time	(and	eventually	integrate!)

Or	use	AxisAccumulator	which	does	it	for	you
Manage	the	value	over	time	based	on	an	input	axis
Can	treat	the	axis	position	as	a	velocity	or	an	acceleration
All	the	work	is	done	in	secondary	threads

p.21

1 import	Qt3D.Input	2.9
2 ...
3
4 LogicalDevice	{
5     axes:	Axis	{
6         id:	mouseYAxis
7         AnalogAxisInput	{
8             sourceDevice:	mouseDevice
9             axis:	MouseDevice.Y
10         }
11     }
12 }
13
14 AxisAccumulator	{
15     sourceAxis:	mouseYAxis
16     sourceAxisType:	AxisAccumulator.Velocity
17     scale:	50
18     //	Can	bind	on	value
19 }

class://Qt3DInput::QAxis
class://Qt3DInput::QAnalogAxisInput
class://Qt3DInput::QButtonAxisInput
qmlElement://Axis
qmlElement://AxisAccumulator


p.22

When	the	axis	value	reaches	it's	maximum,	nothing	happens	anymore
(very	visible	on	rotation)

One	would	expect	the	movement	to	carry	on	indefinitely

Improve	the	code	so	that	the	boxes	move	and	rotate	indefinitely	when	the
corresponding	key	is	pressed

Demo	qt3d/sol-moving-boxes-qml-step4

p.23

Provided	by	the	QtQuick.Scene3D	module

Takes	an	Entity	as	child	which	will	be	your	whole	scene

Loaded	aspects	are	controlled	with	the	aspects	property

Hover	events	are	only	accepted	if	the	hoverEnabled	property	is	true

Works	with	the	usual	QQuickView	or	QQmlApplication	in	your	main()

p.24

Demo	qt3d/ex-controls-overlay

Qt	Demo	examples/qt3d/scene3d

p.25

Provided	by	the	QtQuick.Scene2D	module

Takes	an	Item	as	child	which	will	be	your	whole	2D	scene

It	renders	the	2D	scene	into	a	RenderTargetOutput	controlled	by	the
output	property
Its	texture	can	be	used	by	any	material

The	entities	property	allows	to	declare	on	which	entities	the	texture	will	be
used
Necessary	for	mouse	event	handling
Requires	PickingSettings.TrianglePicking	to	be	set	to	have	the	triangle
information

Mouse	events	are	only	accepted	if	the	mouseEnabled	property	is	true

Demo	qt3d/ex-samegame

qmlElement://QtQuick.Scene3D
qmlElement://Entity
class://QQuickView
class://QQmlApplication
qmlElement://QtQuick.Scene2D
qmlElement://Item
qmlElement://RenderTargetOutput


p.26

Extension	to	picking
Get	all	picked	objects	(as	a	list)
Nothing	picked	event
Event	bubbling
Generalised	picking	(non-event	based,	not	in	screen	space	only)

More	controllers,	especially	related	to	VR

Haptic	feedback?

Combine	with	physics	and	collision	detection

p.27

Moving	and	deforming	objects	in	3D	is	hard

Needs	contraining	to	separate	dimensions	and	operations

Combine	picking	and	generale	device	handling

Manipulators	are	the	controls	of	the	3D	world

Examples from Blender

Demo	qt3d/dragging

Thank	you!

www.kdab.com

mike.krus@kdab.com

www.kdab.com
mike.krus@kdab.com

