
QtBluetooth on Mobile Devices
A Dragon Guide

Mathias Hasselmann, Senior Software Engineer at KDAB



About me

• developing Linux software for almost 20 years now

• implemented central components for Nokia’s Mæmo and Meego phones

• various customer projects in mobile and embedded with KDAB since 2013

2



Topics

• Mobile Platforms

• Short overview on Bluetooth

• Device and service discovery

• Transport protocol

3



Mobile Platforms

• Gartner reports for Q4 of 2016:
– Android: 81.7%

– iOS: 17.9%

– Others:   0.4%

→ just buy your customer an iPhone X –
more profitable (than to support their other platform)

• huge variety of devices
• no control over specifications

4



Bluetooth

• actively developed since 1999

• shares 2.4 GHz with WiFi, ovens, and fridges

• huge specification

• countless profiles

• many implementations, more or less interoperable

5



How about WiFi instead?

• very reliable, efficient, low latency

• major issues:
– restricted APIs for network discovery
– missing APIs for automatic network selection
– most Importantly: What about Internet?

6



Bluetooth Classic vs. Low Energy

• Classic Bluetooth
– successful for headphones, in-car entertainment, hands-free system

– way too inefficient for wearable gadgets

• BTLE allows days instead of hours
– more reasonable timings

– much simpler protocols

• no backwards compatibility

• much slower

7



Device Discovery
BluetoothDeviceDiscoveryAgent

• first results are cached, usually can be told from RSSI

• RSSI highly hardware specific – useless for proximity estimation

• stacks often report classic and BTLE devices – 
independent of selected discovery mechanism

• reported core configuration
in QBluetoothDeviceInfo is unreliable

• spurious results from incomplete BTLE beacons:
“Mathias’ awesome mobile gadget”

8



Service Discovery
QBluetoothServiceDiscoveryAgent

• traditionally via UUID in SDP record

• “everything is a serial port” 
➔ generic SDP record with SPP UUID

➔ custom record with product specific UUID

• Android phones report:
– all SDP records

– only the first record they see

– only the last record they see

– only the standard records they see

9



Service Discovery
QBluetoothServiceDiscoveryAgent

• SDP just doesn’t work well enough on Android

• Hardware address
– controlled by Bluetooth chip vendor

– not accessible on iOS

• Bluetooth device name
– up to 255 characters in UTF-8

– cache and protocol issues

• Generic Attributes (GATT)

10



Transport Protocol
QBluetoothSocket, RFCOMM

• API level zoo for Android version of QtBluetooth

• some Android versions required SDP to create socket
– which just is highly unreliable (on Android) as we learned

– no public API to selected fixed channel

– had to patch QtBluetooth to use fixed channel
(Qt Commercial)

• iOS:
– requires special crypto chip and MFi license from Apple

– underlying iAP2 protocol not supported by QtBluetooth

11



Transport Protocol
Bluetooth Low Energy

• luckily BTLE is well supported both by Android and iOS

• serial port emulation via GATT

• almost transparent for µ-controllers

• very cheap controllers from China (“HM-10”)

• much slower than real SPP via RFCOMM:
– GATT attribute abused as USART buffer (MTU 20)

– confirmation packets after every 20 bytes,
or strict timing and custom transport security layer

• sometimes flow control via separate GATT attribute

12



Transport Protocol
Generic Attributes (GATT)

• generic attribute protocol

• triple based: service UUID, attribute UUID, value

• very similar to RDF ontologies*)

• (usually) trivial to map to hardware state

• avoids overhead of custom protocols
(transport safety, multiplexer, control)

13

*) “They call us crazy, but we store Contacts in Tracker” – Desktop Summit 2011



Thank you!*)

www.kdab.com

mathias.hasselmann@kdab.com

*) ...and to the fine people sharing their pretty dragon pictures on pixabay.com


	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 15

