

Multithreading in Qt

Doing it wrong, debugging it, doing it right

David Faure <david.faure@kdab.com>

Outline

● QThread

● Debugging race conditions

● Debugging deadlocks

● Unit-testing for thread-safety

How to use QThread

● A busy run()

● A default run()

● A wrapper

● Move the object

● Not using it

QThread – a busy run()

● Subclass QThread

● Reimplement run()

● Heavy calculation, or blocking on I/O

● WARNING: no slots called from other threads

QThread – a default run()

● Subclass QThread

● run() calls exec()

● Objects created by this thread, execute slots in it

● WARNING: not the QThread subclass itself!

● Too dangerous, prefer another solution

● Example: qthread_timer_wrong.cpp

QThread – a wrapper

● Solution: separate thread and worker object

● KDThreadRunner, from KDTools

● Worker created from run()

● Semaphores for synchronization both ways

● Example: qthread_timer.cpp + threadrunner.h

QThread – move the object

● Solution: separate thread and worker object

● Documentation changed in Qt 5

● Applies to Qt 4 too

● No QThread subclass

● Move worker to thread

● Example: qthread_timer_worker.cpp

What if I don't use QThread?

● CORBA, Rhapsody, boost, etc. create threads

● Will Qt handle events posted to QObjects in these
threads?

 YES
● Example: qobject_in_non_qt_thread.cpp

● What if all of Qt is used in a secondary thread, can we
create widgets?

YES, if main thread has no Qt.
● Example: qt_in_thread.cpp

Race conditions

● What's a race condition

● How to detect race conditions?
● Reading the code (when expert)

● Frequently unreliable results (when lucky)

● helgrind (everyone else)

● Example: RaceConditionExample, with 10 and with 100000

Setting up helgrind for Qt

● Helgrind isn't perfect yet, especially for Qt code
● Lock order detection (AB/BA) hits bug 243232 due to
QOrderedMutexLocker .

● glib has its own issues

➪alias helgrind=

"QT_NO_GLIB=1 valgrind --tool=helgrind --track-lockorders=no"

Setting up Qt for helgrind

● Qt code isn't perfect yet, especially for helgrind
● qFlagLocation() race

➪apply http://www.davidfaure.fr/kde/qflaglocation-fix.diff

● QEventLoop::exec() races with exit()

➪to be ported to an atomic data type

● QFuture race in waitForResult

➪https://codereview.qt-project.org/38025

● Qt5 atomics are seen as racy

➪apply http://www.davidfaure.fr/kde/qatomics-helgrind.diff

(work in progress)

http://www.davidfaure.fr/kde/qflaglocation-fix.diff
https://codereview.qt-project.org/38025
http://www.davidfaure.fr/kde/qatomics-helgrind.diff

Ready for helgrind!

● What's wrong with this code?

bool MyClass::acceptString(const QString& str)
{
 QReadLocker locker(&m_lock);
 return m_regExp.exactMatch(str);
}

Example: qregexp_race.cpp

Very unreliable results.
Memcheck says clean!
Helgrind says clean, initially...

Discussion: reentrant vs thread-safe

Debugging deadlocks

● Deadlock!

● gdb appname <pid>

● thread apply all bt

Example: qmutex_order.cpp

Race prevention

● Testing code for thread-safety

● QtConcurrent::run in unit tests

● Case at hand: using a QUrl in multiple threads

● Unit test addition in tst_qurl.cpp

● export MALLOC_CHECK_=1 (or 3)

● repeat 10 ./tst_qurl testThreading

● gdb doesn't help [works, or deadlocks]

● helgrind doesn't help [warns in QFuture only]

Making helgrind see it

● Runnables finish too early, so they get reused

● See activeThreadCount()

● Helgrind needs to see concurrent threads!

● Solution: add qSleep(10)

● 100 concurrent threads

● Finally, helgrind finds the issue

● Implicit sharing + on-demand parsing

Conclusion

● Careful with subclassing QThread

● Test your library code with QtConcurrent

● Use helgrind on your multithreaded code

● Compile your code on linux, to use valgrind

● Help me making Qt helgrind-clean

● Questions?

