
QML for Desktop Applications 
Helmut Sedding 

Michael T. Wagner 

IPO.Plan GmbH 

 

Qt Developer Days Berlin 2012 



About us 

 IPO.Plan GmbH 

 Located in Ulm and in Leonberg near Stuttgart 

 The company is both experienced in factory planning and in 
software development. 

 Our software focuses on process and logistics planning 

 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 



QML for Desktop Applications 

 Real World Usage: IPO.Log 

 Tight Data Coupling 

 QML for 2D Editing 

 Desktop GUI 

 Résumé 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 



Real World Usage 

 IPO.Log is used by 
manufacturing industries for 
assembly process and 
logistics planning 

 IPO.Log provides a GUI 
tailored to its specific needs 

 To allow for a modern, 
streamlined GUI and rapid 
development we chose QML 

 QML brings the highly 
customized graphical Web & 
Mobile User Interfaces to the 
desktop 

 www.ipolog.de  

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 

http://www.ipolog.de/


Tight Data Coupling: Values 
Connect C++ Data Models to QML Views 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 



Data Binding 

 Property binding 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 

QObject 

Property 

Usage in QML Binding 

Qt Property 
in C++ Class 

Access 
Read 

& Write 

Q_PROPERTY(qreal angle READ angle  WRITE setAngle  NOTIFY angleChanged);  

Rectangle { rotation: object.angle }  



Data Binding 

 Property binding 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 

QObject 

Property 

Usage in QML Binding 

Qt Property 
in C++ Class 

Access 
Read 

& Write 

Q_PROPERTY(qreal angle READ  angle  WRITE  setAngle  NOTIFY  angleChanged);  

Rectangle { rotation: object.angle }  

MouseArea { onClicked: object.angle = 45 }  



Data Binding 

 Property binding 

 Change propagation via Notification signals 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 

QObject 

Property 

Usage in QML Binding 

1. Change Notification 2. Recalculation On Change: 



Data Binding 

 Property binding 

 Change propagation via Notification signals 

 Enables centralized data storage 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 

QObject 

Property 
Usage in QML Binding 



Data Binding 

 Property binding 

 Change propagation via Notification signals 

 Enables centralized data storage 

 

 Advantages: 
 Subscription based model views 

 Q_PROPERTY macros define clear interface 

 Disadvantages: 
 Signal setup for each binding: 50% slower than const values 

 On Notify: update time scales linear with usages 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 



Selection: Example for slow data binding 

 Display a list of numbers 

 Task: display “SEL” at selected index, else “---” 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 

property int selectedIndex: 7 

 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

--- 
--- 
--- 
--- 
--- 
--- 
--- 
SEL 
--- 
--- 



Selection: Example for slow data binding 

 Display a list of numbers 

 Task: display “SEL” at selected index, else “---” 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 

property int selectedIndex: 7 

 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

--- 
--- 
--- 
--- 
--- 
--- 
--- 
SEL 
--- 
--- 

--- 
--- 
--- 
--- 
SEL 
--- 
--- 
--- 
--- 
--- 

4 



Selection: Example for slow data binding 

 Display a list of numbers 

 Task: display “SEL” at selected index, else “---” 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 

property int selectedIndex: 7 

 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

--- 
--- 
--- 
--- 
--- 
--- 
--- 
SEL 
--- 
--- 

--- 
--- 
--- 
--- 
SEL 
--- 
--- 
--- 
--- 
--- 

4 

MouseClick 



Selection “naïve”: notifications costly 

 Task: display “SEL” at selected index, else “---” 

 Naïve Solution: 

 

 

 

 

 

 

 Slow on change, because all delegates are notified 

 Insufficient for big applications 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 

property int selectedIndex: -1 

Column { 

    id: rep 

    Repeater { 

        model: 1000 

        delegate: Text { 

            property bool isSelected: index == selectedIndex 

            text: isSelected ? "SEL" : "---" 

            MouseArea { anchors.fill:parent; onClicked: selectedIndex = index } 

        } 

    } 

} 

re-evaluates on change 

* Number of Items 



Selection: Example for slow data binding 

 Task: display “SEL” at selected index, else “---” 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 

property int selectedIndex: 7 

 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

--- 
--- 
--- 
--- 
--- 
--- 
--- 
SEL 
--- 
--- 

--- 
--- 
--- 
--- 
SEL 
--- 
--- 
--- 
--- 
--- 

4 

Actually, only two items 
need to change 



Selection “quick”: update selected item only 

 Solution with constant update time: 

 

 

 

 

 

 

 

 

 Quick on change: only two delegates are updated 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 

property int selectedIndex: -1 

property int selectedIndexBefore: -1 

onSelectedIndexChanged: { 

    if(selectedIndexBefore>=0) { rep.children[selectedIndexBefore].isSelected = false } 

    if(selectedIndex>=0) { rep.children[selectedIndex].isSelected = true } 

    selectedIndexBefore = selectedIndex 

} 

Column { 

    id: rep 

    Repeater { 

        model: 1000 

        delegate: Text { 

            property bool isSelected: false 

            text: isSelected ? "SEL" : "---" 

            MouseArea { anchors.fill:parent; onClicked: selectedIndex = index } 

        } 

    } 

} 

re-evaluates on change 

* 2 



Selection of QObjects: improved handling  

 When using C++ data models 

 Quick selection handling can be provided efficiently by a hard 

coded isSelected property, that is written centrally 
Q_PROPERTY(bool isSelected READ isSelected NOTIFY isSelectedChanged); 

 Updates in constant time 

 Selection handling happens at one single point only 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 



Tight Data Coupling: Lists 
Connect C++ Data Models to QML Views 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 



Data Model Requirements 

 How can lists of QObject* be efficiently stored in C++, 
and handled transparently by QML? 

 Requirements: 

 Easy and quick C++ handling 

 Detailed Repeater updating 

 On Add/Remove:  
non-changing items remain 

 Pass List as function parameters 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 

List 



Data Model: Alternatives 

 QList<T>, QVariantList 

 No detailed Repeater Updating (only total reset) 

 QML ListModel 

 No access from C++ 

 QAbstractListModel 

 Slow and tedious access in C++ with QVariant, QModelIndex 

 QObjectListModel 

 Proposed solution 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 



Data Model: QObjectListModel* 

 QObjectListModel*  

 Base class: QAbstractListModel 

 Stores QList< QObject*> internally 

 Sends Add/Remove signals 

 Provides solution for both C++ and QML: 

 C++: Accessors typed by QObject* are quick and easy to handle 

 Repeaters can deal with its base class: QAbstractListModel 

 Pointer has small memory footprint in method arguments 

 QObjectListModelT<T>* 

 Same as above, but additionally typed 

 

 This way, C++ storage is efficient and transparent for QML 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 



Accessing QObjectListModel items 

 Provide Property for QML access: 
 Q_PROPERTY(QObjectListModel * list READ list CONSTANT); 

 By Integer (array-index): 
 list.get(i) 

 By Object: 
 var i = list.indexOf(object) 

 By Name: 
 var i = list.indexOfName("Crichton") 

 

 We extended this to provide constant access time with self-
updating index if needed 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 



Typed List: QObjectListModelT<T>* 

 

 Typed QObjectListModels: 
 class RackListModel : public QObjectListModelT<Rack *> {  

}; 

 

 Statically typed c++ accessors: 
 Rack * rack = list.at(3); 

 

 Typed Property for QML access: 

 Q_PROPERTY(RackListModel * racks READ racks CONSTANT); 

 

 Beforehand, make the list available in QML: 
 qmlRegisterUncreatableType<RackListModel>("IpoLog",3,0,"RackListModel",QString()); 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 



Filtering&Sorting QObjectListModels 

 Proxy Models can filter or sort other list models. 

 Updates are forwarded though proxy models 

 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 

QObjectListModel* ListSortFilterModel 



Filtering&Sorting QObjectListModels 

 Proxy Models can filter or sort data. 

 Updates are forwarded though proxy models 

 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 

ListSortFilterNameModel { 

    id: sortFilterModel 

    model: dataModel 

 
    filterWildcard: "abc*" 

    filterRole: "name" 

    filterCaseSensitivity: ListSortFilterNameModel.CaseInsensitive 

     

    sorted: true 

    sortRole: "birthday" 

    sortDescending: false 

} 

Repeater { 

    model: sortFilterModel 

    ... 

} 

INPUT 

OUTPUT 



Proxy Model Chaining 

 Proxy Models can even be chained 

 Here e.g. multiple string filters 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 

QObjectListModel* ProxyModel ProxyModel ProxyModel 

ListSortFilterNameModel { 

    id: modelA 

    model: dataModel 

 
    filterWildcard: "abc*" 

    filterRole: "name“ 

} 

dataModel 
ListSortFilterNameModel { 

    id: modelB 

    model: modelA 

 
    filterWildcard: "abc*" 

    filterRole: “surname" 

} 

ListSortFilterNameModel { 

    id: modelC 

    model: modelB 

 
    sorted: true 

    sortRole: "birthday" 

    sortDescending: false 

} 



Customized Proxy Models 

 There often arise custom  
filtering needs: 
 e.g. object.nr < 100 

 

 Custom filtering achieved by defining javascript methods 
that are called from C++ 

 

 

 

 

 Sorting is similar, calling lessThan 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 

ListFilterModel { 

    model: dataModel 

    filtered: true 

    function filterAccepts(index, obj) { 

        return object.nr < 100 

    } 

} 

 

Performance 
• suitable for lists with ca. 1000 items. 
• If it’s not quick enough, simply switch to 

a C++ proxy model implementation 



Tight Data Coupling: Summary 

 Property binding and QObjectListModel* 

 allows for centralized data storage 

 Usable both in C++ and QML 

 easy change propagation 

 Careful when using many bindings at the same time 

 Slow setup and teardown 

 

 

 

 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 



QML for 2D Editing 
Viewing and Editing 2D Objects 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 



Flickable: A Scrollable 2D Canvas 

 Scrolling looks good in QML 

 Repeater puts objects into scene 

 Objects positioned using data binding 

 Polygons drawn by QPainter in QGraphicsItems 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 



Repeater creates objects 

 Data Model of geometric objects 

 Each object has  

 Transformation 

 position  

 angle 

 Size 

 boundsMinimum 

 boundsMaximum 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 

Repeater { 

    model: workspace.racks 

    delegate: Item { 

        x:object.position.x 

        y:object.position.y 

        rotation: object.angle 

        Rectangle{ 

            width:(object.boundsMaximum.x-object.boundsMinimum.x) 

            height:(object.boundsMaximum.y-object.boundsMinimum.y) 

            color: "#ccc" 

        } 

    } 

} 



Flickable: Bounding Calculation 

 Flickable starts at coordinate (0,0) 

 But items don’t do that, they are offset 

 Therefore offset by childrenRect 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 

Flickable { 

    id: outer 
    contentWidth: inner.width 

    contentHeight: inner.height 

    Item { 

        id: inner 
        x: -childrenRect.x+50 

        y: -childrenRect.y+50 

        width: childrenRect.width+100 

        height: childrenRect.height+100 

 

/* CONTENT HERE */ 

 
    } 

} 

  

(0,0) 



Polygon: Drawn by Custom QML Item 

 Polygons are not supported by QML 

 Resorting to QGraphicsItem 

 Which lives perfectly fine in QDeclarativeScenes 

 Drawing with QPainter 

 Non-Rectangular shape requires custom mouse hit testing 

 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 



Editing For Many Complex Items 

 Naïve Solution: Hide not needed Edit Components 

 Drawback: memory requirements and setup/teardown times 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 

Simple View Item Complex Edit Item 



Editing: Single Edit Component 

 Save memory by using the Single Edit Component pattern 
 Split view into simple view items and few complex edit items 

 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 

Simple View Item Complex Edit Item 

Always switching 
to currently selected item 



QML for 2D Editing: Summary 

 Flickable works quite well 
 Scrolling 
 Zooming 
 Content Fit 

 
 For Complex Graphic Items 

 use fallback solution: C++ rendering (e.g. for polygons) 
 limit element count, e.g. use the Single Edit Component pattern 

 
 Next improvements 

 Level of Detail 
 Lazy loading 

 

 Limitations 
 Flickable redrawing is not perfect 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 



Desktop GUI 
Viewing and Editing 2D Objects 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 



Tool Tips 

 Defined easily: 

 

 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 

ImageButton { 

    text: "Do" 

    ToolTip.text: "Does nothing" 

} 



Tool Tips 

 Defined easily: 

 

 

 Implemented as an attached property: 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 

class ToolTipAttached : public QObject 

{ 

 Q_OBJECT; 

 Q_PROPERTY(QString text READ text WRITE setText NOTIFY textChanged); 

public: 

 static ToolTipAttached *qmlAttachedProperties(QObject *obj); 

  

 ToolTipAttached(QObject *parent) : QObject(parent) {} 

 … 
}; 

QML_DECLARE_TYPEINFO(ToolTipAttached, QML_HAS_ATTACHED_PROPERTIES) 

 

ImageButton { 

    text: "Do" 

    ToolTip.text: "Does nothing" 

} 



Drag-n-Drop 

 Custom DragArea, DropArea items 

 Using standard Qt Drag-n-Drop implementation 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 

DragArea { 

    enabled:avoDragEnabled 

    anchors.fill: parent 

    supportedActions: Qt.MoveAction 

    data { 

        text: "Process" 

        source: parent 

    } 

    onDragStart: {} 

    onDragEnd: {} 

} 

DropArea { 

    anchors.fill: parent 

    onDragEnter: {} 

    onDragLeave: {} 

    onDrop: { 

        event.accept(Qt.MoveAction); 

        doDrag(event.data.source); 

    } 

} 



Desktop GUI: Limitations 

 Custom QML Items are handy but not always 
 Too many cases make abstraction slow 

 When e.g. Button.qml both supports Image and Text 

 Rather come up with more specialized items 
 e.g. TextButton.qml and ImageButton.qml 

 Mouse Input is sufficient for desktop use 
 But we did not need context menus 

 Keyboard input is tedious: 
 tab orders, shortcut keys 

 ListViews and Scrollbars don’t fit together well 
 Delegate item height can’t be fixed 

 

 Helmut Sedding and Michael T. Wagner  |  IPO.Plan 



Résumé 
QML makes desktop GUIs attractive again 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 



Advantages 

 Animations look stunning and are easy to create 

 Easy to change without recompiling 

 Pixel-perfect UI is created quickly 

 Data-Binding simplifies update-routines 

 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 



Disadvantages 

 Display of many elements requires fine-tuning 

 Fallback to fast C++ QGraphicItems is possible 

 Keyboard input is tedious 

 QML itself 

 QML lacks certain abstractions 

 Data-Binding uses QVariant, loss of type-safety 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 



Futher outlook 

 Thanks for your interest 

 

 We are looking for companies and developers with similar 
QML desktop experiences 

 

 Talk tomorrow, 11:30 in Moskau B: 

 SoDeclarative – a declarative wrapper for Coin3D 

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 



Sources 

 

 QObjectListModel 
https://bitbucket.org/helmuts/qobjectlistmodel/  

 

 DragNDrop 
https://bitbucket.org/gregschlom/qml-drag-drop/  

Helmut Sedding and Michael T. Wagner  |  IPO.Plan 

https://bitbucket.org/helmuts/qobjectlistmodel/
https://bitbucket.org/helmuts/qobjectlistmodel/
https://bitbucket.org/gregschlom/qml-drag-drop/
https://bitbucket.org/gregschlom/qml-drag-drop/
https://bitbucket.org/gregschlom/qml-drag-drop/
https://bitbucket.org/gregschlom/qml-drag-drop/
https://bitbucket.org/gregschlom/qml-drag-drop/

