
QML for Desktop Applications
Helmut Sedding

Michael T. Wagner

IPO.Plan GmbH

Qt Developer Days Berlin 2012

About us

 IPO.Plan GmbH

 Located in Ulm and in Leonberg near Stuttgart

 The company is both experienced in factory planning and in
software development.

 Our software focuses on process and logistics planning

Helmut Sedding and Michael T. Wagner | IPO.Plan

QML for Desktop Applications

 Real World Usage: IPO.Log

 Tight Data Coupling

 QML for 2D Editing

 Desktop GUI

 Résumé

Helmut Sedding and Michael T. Wagner | IPO.Plan

Real World Usage

 IPO.Log is used by
manufacturing industries for
assembly process and
logistics planning

 IPO.Log provides a GUI
tailored to its specific needs

 To allow for a modern,
streamlined GUI and rapid
development we chose QML

 QML brings the highly
customized graphical Web &
Mobile User Interfaces to the
desktop

 www.ipolog.de

Helmut Sedding and Michael T. Wagner | IPO.Plan

http://www.ipolog.de/

Tight Data Coupling: Values
Connect C++ Data Models to QML Views

Helmut Sedding and Michael T. Wagner | IPO.Plan

Data Binding

 Property binding

Helmut Sedding and Michael T. Wagner | IPO.Plan

QObject

Property

Usage in QML Binding

Qt Property
in C++ Class

Access
Read

& Write

Q_PROPERTY(qreal angle READ angle WRITE setAngle NOTIFY angleChanged);

Rectangle { rotation: object.angle }

Data Binding

 Property binding

Helmut Sedding and Michael T. Wagner | IPO.Plan

QObject

Property

Usage in QML Binding

Qt Property
in C++ Class

Access
Read

& Write

Q_PROPERTY(qreal angle READ angle WRITE setAngle NOTIFY angleChanged);

Rectangle { rotation: object.angle }

MouseArea { onClicked: object.angle = 45 }

Data Binding

 Property binding

 Change propagation via Notification signals

Helmut Sedding and Michael T. Wagner | IPO.Plan

QObject

Property

Usage in QML Binding

1. Change Notification 2. Recalculation On Change:

Data Binding

 Property binding

 Change propagation via Notification signals

 Enables centralized data storage

Helmut Sedding and Michael T. Wagner | IPO.Plan

QObject

Property
Usage in QML Binding

Data Binding

 Property binding

 Change propagation via Notification signals

 Enables centralized data storage

 Advantages:
 Subscription based model views

 Q_PROPERTY macros define clear interface

 Disadvantages:
 Signal setup for each binding: 50% slower than const values

 On Notify: update time scales linear with usages

Helmut Sedding and Michael T. Wagner | IPO.Plan

Selection: Example for slow data binding

 Display a list of numbers

 Task: display “SEL” at selected index, else “---”

Helmut Sedding and Michael T. Wagner | IPO.Plan

property int selectedIndex: 7

0

1

2

3

4

5

6

7

8

9

SEL

Selection: Example for slow data binding

 Display a list of numbers

 Task: display “SEL” at selected index, else “---”

Helmut Sedding and Michael T. Wagner | IPO.Plan

property int selectedIndex: 7

0

1

2

3

4

5

6

7

8

9

SEL

SEL

4

Selection: Example for slow data binding

 Display a list of numbers

 Task: display “SEL” at selected index, else “---”

Helmut Sedding and Michael T. Wagner | IPO.Plan

property int selectedIndex: 7

0

1

2

3

4

5

6

7

8

9

SEL

SEL

4

MouseClick

Selection “naïve”: notifications costly

 Task: display “SEL” at selected index, else “---”

 Naïve Solution:

 Slow on change, because all delegates are notified

 Insufficient for big applications

Helmut Sedding and Michael T. Wagner | IPO.Plan

property int selectedIndex: -1

Column {

 id: rep

 Repeater {

 model: 1000

 delegate: Text {

 property bool isSelected: index == selectedIndex

 text: isSelected ? "SEL" : "---"

 MouseArea { anchors.fill:parent; onClicked: selectedIndex = index }

 }

 }

}

re-evaluates on change

* Number of Items

Selection: Example for slow data binding

 Task: display “SEL” at selected index, else “---”

Helmut Sedding and Michael T. Wagner | IPO.Plan

property int selectedIndex: 7

0

1

2

3

4

5

6

7

8

9

SEL

SEL

4

Actually, only two items
need to change

Selection “quick”: update selected item only

 Solution with constant update time:

 Quick on change: only two delegates are updated

Helmut Sedding and Michael T. Wagner | IPO.Plan

property int selectedIndex: -1

property int selectedIndexBefore: -1

onSelectedIndexChanged: {

 if(selectedIndexBefore>=0) { rep.children[selectedIndexBefore].isSelected = false }

 if(selectedIndex>=0) { rep.children[selectedIndex].isSelected = true }

 selectedIndexBefore = selectedIndex

}

Column {

 id: rep

 Repeater {

 model: 1000

 delegate: Text {

 property bool isSelected: false

 text: isSelected ? "SEL" : "---"

 MouseArea { anchors.fill:parent; onClicked: selectedIndex = index }

 }

 }

}

re-evaluates on change

* 2

Selection of QObjects: improved handling

 When using C++ data models

 Quick selection handling can be provided efficiently by a hard

coded isSelected property, that is written centrally
Q_PROPERTY(bool isSelected READ isSelected NOTIFY isSelectedChanged);

 Updates in constant time

 Selection handling happens at one single point only

Helmut Sedding and Michael T. Wagner | IPO.Plan

Tight Data Coupling: Lists
Connect C++ Data Models to QML Views

Helmut Sedding and Michael T. Wagner | IPO.Plan

Data Model Requirements

 How can lists of QObject* be efficiently stored in C++,
and handled transparently by QML?

 Requirements:

 Easy and quick C++ handling

 Detailed Repeater updating

 On Add/Remove:
non-changing items remain

 Pass List as function parameters

Helmut Sedding and Michael T. Wagner | IPO.Plan

List

Data Model: Alternatives

 QList<T>, QVariantList

 No detailed Repeater Updating (only total reset)

 QML ListModel

 No access from C++

 QAbstractListModel

 Slow and tedious access in C++ with QVariant, QModelIndex

 QObjectListModel

 Proposed solution

Helmut Sedding and Michael T. Wagner | IPO.Plan

Data Model: QObjectListModel*

 QObjectListModel*

 Base class: QAbstractListModel

 Stores QList< QObject*> internally

 Sends Add/Remove signals

 Provides solution for both C++ and QML:

 C++: Accessors typed by QObject* are quick and easy to handle

 Repeaters can deal with its base class: QAbstractListModel

 Pointer has small memory footprint in method arguments

 QObjectListModelT<T>*

 Same as above, but additionally typed

 This way, C++ storage is efficient and transparent for QML

Helmut Sedding and Michael T. Wagner | IPO.Plan

Accessing QObjectListModel items

 Provide Property for QML access:
 Q_PROPERTY(QObjectListModel * list READ list CONSTANT);

 By Integer (array-index):
 list.get(i)

 By Object:
 var i = list.indexOf(object)

 By Name:
 var i = list.indexOfName("Crichton")

 We extended this to provide constant access time with self-
updating index if needed

Helmut Sedding and Michael T. Wagner | IPO.Plan

Typed List: QObjectListModelT<T>*

 Typed QObjectListModels:
 class RackListModel : public QObjectListModelT<Rack *> {

};

 Statically typed c++ accessors:
 Rack * rack = list.at(3);

 Typed Property for QML access:

 Q_PROPERTY(RackListModel * racks READ racks CONSTANT);

 Beforehand, make the list available in QML:
 qmlRegisterUncreatableType<RackListModel>("IpoLog",3,0,"RackListModel",QString());

Helmut Sedding and Michael T. Wagner | IPO.Plan

Filtering&Sorting QObjectListModels

 Proxy Models can filter or sort other list models.

 Updates are forwarded though proxy models

Helmut Sedding and Michael T. Wagner | IPO.Plan

QObjectListModel* ListSortFilterModel

Filtering&Sorting QObjectListModels

 Proxy Models can filter or sort data.

 Updates are forwarded though proxy models

Helmut Sedding and Michael T. Wagner | IPO.Plan

ListSortFilterNameModel {

 id: sortFilterModel

 model: dataModel

 filterWildcard: "abc*"

 filterRole: "name"

 filterCaseSensitivity: ListSortFilterNameModel.CaseInsensitive

 sorted: true

 sortRole: "birthday"

 sortDescending: false

}

Repeater {

 model: sortFilterModel

 ...

}

INPUT

OUTPUT

Proxy Model Chaining

 Proxy Models can even be chained

 Here e.g. multiple string filters

Helmut Sedding and Michael T. Wagner | IPO.Plan

QObjectListModel* ProxyModel ProxyModel ProxyModel

ListSortFilterNameModel {

 id: modelA

 model: dataModel

 filterWildcard: "abc*"

 filterRole: "name“

}

dataModel
ListSortFilterNameModel {

 id: modelB

 model: modelA

 filterWildcard: "abc*"

 filterRole: “surname"

}

ListSortFilterNameModel {

 id: modelC

 model: modelB

 sorted: true

 sortRole: "birthday"

 sortDescending: false

}

Customized Proxy Models

 There often arise custom
filtering needs:
 e.g. object.nr < 100

 Custom filtering achieved by defining javascript methods
that are called from C++

 Sorting is similar, calling lessThan

Helmut Sedding and Michael T. Wagner | IPO.Plan

ListFilterModel {

 model: dataModel

 filtered: true

 function filterAccepts(index, obj) {

 return object.nr < 100

 }

}

Performance
• suitable for lists with ca. 1000 items.
• If it’s not quick enough, simply switch to

a C++ proxy model implementation

Tight Data Coupling: Summary

 Property binding and QObjectListModel*

 allows for centralized data storage

 Usable both in C++ and QML

 easy change propagation

 Careful when using many bindings at the same time

 Slow setup and teardown

Helmut Sedding and Michael T. Wagner | IPO.Plan

QML for 2D Editing
Viewing and Editing 2D Objects

Helmut Sedding and Michael T. Wagner | IPO.Plan

Flickable: A Scrollable 2D Canvas

 Scrolling looks good in QML

 Repeater puts objects into scene

 Objects positioned using data binding

 Polygons drawn by QPainter in QGraphicsItems

Helmut Sedding and Michael T. Wagner | IPO.Plan

Repeater creates objects

 Data Model of geometric objects

 Each object has

 Transformation

 position

 angle

 Size

 boundsMinimum

 boundsMaximum

Helmut Sedding and Michael T. Wagner | IPO.Plan

Repeater {

 model: workspace.racks

 delegate: Item {

 x:object.position.x

 y:object.position.y

 rotation: object.angle

 Rectangle{

 width:(object.boundsMaximum.x-object.boundsMinimum.x)

 height:(object.boundsMaximum.y-object.boundsMinimum.y)

 color: "#ccc"

 }

 }

}

Flickable: Bounding Calculation

 Flickable starts at coordinate (0,0)

 But items don’t do that, they are offset

 Therefore offset by childrenRect

Helmut Sedding and Michael T. Wagner | IPO.Plan

Flickable {

 id: outer
 contentWidth: inner.width

 contentHeight: inner.height

 Item {

 id: inner
 x: -childrenRect.x+50

 y: -childrenRect.y+50

 width: childrenRect.width+100

 height: childrenRect.height+100

/* CONTENT HERE */

 }

}

(0,0)

Polygon: Drawn by Custom QML Item

 Polygons are not supported by QML

 Resorting to QGraphicsItem

 Which lives perfectly fine in QDeclarativeScenes

 Drawing with QPainter

 Non-Rectangular shape requires custom mouse hit testing

Helmut Sedding and Michael T. Wagner | IPO.Plan

Editing For Many Complex Items

 Naïve Solution: Hide not needed Edit Components

 Drawback: memory requirements and setup/teardown times

Helmut Sedding and Michael T. Wagner | IPO.Plan

Simple View Item Complex Edit Item

Editing: Single Edit Component

 Save memory by using the Single Edit Component pattern
 Split view into simple view items and few complex edit items

Helmut Sedding and Michael T. Wagner | IPO.Plan

Simple View Item Complex Edit Item

Always switching
to currently selected item

QML for 2D Editing: Summary

 Flickable works quite well
 Scrolling
 Zooming
 Content Fit

 For Complex Graphic Items

 use fallback solution: C++ rendering (e.g. for polygons)
 limit element count, e.g. use the Single Edit Component pattern

 Next improvements

 Level of Detail
 Lazy loading

 Limitations
 Flickable redrawing is not perfect

Helmut Sedding and Michael T. Wagner | IPO.Plan

Desktop GUI
Viewing and Editing 2D Objects

Helmut Sedding and Michael T. Wagner | IPO.Plan

Tool Tips

 Defined easily:

Helmut Sedding and Michael T. Wagner | IPO.Plan

ImageButton {

 text: "Do"

 ToolTip.text: "Does nothing"

}

Tool Tips

 Defined easily:

 Implemented as an attached property:

Helmut Sedding and Michael T. Wagner | IPO.Plan

class ToolTipAttached : public QObject

{

 Q_OBJECT;

 Q_PROPERTY(QString text READ text WRITE setText NOTIFY textChanged);

public:

 static ToolTipAttached *qmlAttachedProperties(QObject *obj);

 ToolTipAttached(QObject *parent) : QObject(parent) {}

 …
};

QML_DECLARE_TYPEINFO(ToolTipAttached, QML_HAS_ATTACHED_PROPERTIES)

ImageButton {

 text: "Do"

 ToolTip.text: "Does nothing"

}

Drag-n-Drop

 Custom DragArea, DropArea items

 Using standard Qt Drag-n-Drop implementation

Helmut Sedding and Michael T. Wagner | IPO.Plan

DragArea {

 enabled:avoDragEnabled

 anchors.fill: parent

 supportedActions: Qt.MoveAction

 data {

 text: "Process"

 source: parent

 }

 onDragStart: {}

 onDragEnd: {}

}

DropArea {

 anchors.fill: parent

 onDragEnter: {}

 onDragLeave: {}

 onDrop: {

 event.accept(Qt.MoveAction);

 doDrag(event.data.source);

 }

}

Desktop GUI: Limitations

 Custom QML Items are handy but not always
 Too many cases make abstraction slow

 When e.g. Button.qml both supports Image and Text

 Rather come up with more specialized items
 e.g. TextButton.qml and ImageButton.qml

 Mouse Input is sufficient for desktop use
 But we did not need context menus

 Keyboard input is tedious:
 tab orders, shortcut keys

 ListViews and Scrollbars don’t fit together well
 Delegate item height can’t be fixed

 Helmut Sedding and Michael T. Wagner | IPO.Plan

Résumé
QML makes desktop GUIs attractive again

Helmut Sedding and Michael T. Wagner | IPO.Plan

Advantages

 Animations look stunning and are easy to create

 Easy to change without recompiling

 Pixel-perfect UI is created quickly

 Data-Binding simplifies update-routines

Helmut Sedding and Michael T. Wagner | IPO.Plan

Disadvantages

 Display of many elements requires fine-tuning

 Fallback to fast C++ QGraphicItems is possible

 Keyboard input is tedious

 QML itself

 QML lacks certain abstractions

 Data-Binding uses QVariant, loss of type-safety

Helmut Sedding and Michael T. Wagner | IPO.Plan

Futher outlook

 Thanks for your interest

 We are looking for companies and developers with similar
QML desktop experiences

 Talk tomorrow, 11:30 in Moskau B:

 SoDeclarative – a declarative wrapper for Coin3D

Helmut Sedding and Michael T. Wagner | IPO.Plan

Sources

 QObjectListModel
https://bitbucket.org/helmuts/qobjectlistmodel/

 DragNDrop
https://bitbucket.org/gregschlom/qml-drag-drop/

Helmut Sedding and Michael T. Wagner | IPO.Plan

https://bitbucket.org/helmuts/qobjectlistmodel/
https://bitbucket.org/helmuts/qobjectlistmodel/
https://bitbucket.org/gregschlom/qml-drag-drop/
https://bitbucket.org/gregschlom/qml-drag-drop/
https://bitbucket.org/gregschlom/qml-drag-drop/
https://bitbucket.org/gregschlom/qml-drag-drop/
https://bitbucket.org/gregschlom/qml-drag-drop/

