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Problem

What's the Problem?



  

So, where's the bug in your QML?

Invalid read of size 1

 at 0x4C2D9B0: bcmp (in /usr/lib64/valgrind/vgpreload_memcheck-amd64-linux.so)

 by 0x6B33AA6: QOpenGLFunctions::glLinkProgram(unsigned int) (qopenglfunctions.h:1098)

 by 0x6B2FD15: QOpenGLShaderProgram::link() (qopenglshaderprogram.cpp:826)

 by 0x4F83AE1: QSGDefaultDistanceFieldGlyphCache::createBlitProgram() (qsgdefaultdistancefieldglyphcache_p.h:118)

 by 0x4F82D50: QSGDefaultDistanceFieldGlyphCache::resizeTexture(QSGDefaultDistanceFieldGlyphCache::TextureInfo*, int, int)

 by 0x4F8262A: QSGDefaultDistanceFieldGlyphCache::storeGlyphs(QHash<unsigned int, QImage> const&) 

 by 0x4F77A81: QSGDistanceFieldGlyphCache::update() (qsgadaptationlayer.cpp:169)

 by 0x4F86449: QSGDistanceFieldGlyphNode::preprocess() (qsgdistancefieldglyphnode.cpp:167)

 by 0x4F690E8: QSGRenderer::preprocess() (qsgrenderer.cpp:378)

 by 0x4F68A06: QSGRenderer::renderScene(QSGBindable const&) (qsgrenderer.cpp:248)

 by 0x4F68975: QSGRenderer::renderScene() (qsgrenderer.cpp:229)

 by 0x4F7B48E: QSGContext::renderNextFrame(QSGRenderer*, unsigned int) (qsgcontext.cpp:270)

 by 0x4FBE833: QQuickWindowPrivate::renderSceneGraph(QSize const&) (qquickwindow.cpp:346)

 by 0x50D0217: QQuickTrivialWindowManager::renderWindow(QQuickWindow*) (qquickwindowmanager.cpp:263)

 by 0x50D076F: QQuickTrivialWindowManager::event(QEvent*) (qquickwindowmanager.cpp:351)

 by 0x5B37DB7: QApplicationPrivate::notify_helper(QObject*, QEvent*) (qapplication.cpp:3619)

 by 0x5B354A9: QApplication::notify(QObject*, QEvent*) (qapplication.cpp:3050)

 by 0x79B9479: QCoreApplication::notifyInternal(QObject*, QEvent*) (qcoreapplication.cpp:748)

 by 0x79BCC86: QCoreApplication::sendEvent(QObject*, QEvent*) (in /home/vkrause/dev/qt5/inst/lib/libQtCore.so.5.0.0)

 by 0x79BA53D: QCoreApplicationPrivate::sendPostedEvents(QObject*, int, QThreadData*) (qcoreapplication.cpp:1349)

 by 0x79BA0FE: QCoreApplication::sendPostedEvents(QObject*, int) (qcoreapplication.cpp:1209)

Address 0x7fa847b93a81 is not stack'd, malloc'd or (recently) free'd



  

GDB is not enough

● Increasing abstraction

● Asynchronous API

● Distributed architecture

● Runtime interpreted code

● JIT compilers



  

General Purpose Tools

● Instruction-level debuggers

● printf

● Profilers measuring:
●  CPU ticks

● malloc calls



  

Increasing abstraction

● Examples:
● Qt Model/View

● QStateMachine

● Instruction-level view is too far below semantics

● Debug output triggered too often



  

Asynchronous API

● Examples:
● QNetworkAccessManager/QNetworkReply

● Job-based APIs

● Hard to follow control flow



  

Distributed Architecture

● Examples:
● D-Bus

● Even harder to follow control flow

● Profilers don't analyze complexity in IPC 
protocol



  

Runtime Interpreted Code

● Examples:
● QtQuick

● QtWebKit

● Debuggers and profilers analyze interpreter 
code

● Hard to correlate issues in interpreter to issues 
in interpreted code



  

JIT-Compiled Code

● Examples:
● QtScript

● QtQuick

● Debuggers and profilers see generated code

● Even harder to correlate issues in generated 
code to issues in original QML/JavaScript.



  

General Purpose Tools

● Inefficient/cumbersome

● Require knowledge of framework internals
● Up to the point of a JIT compiler!

● Can lead to erroneous conclusions
● “JavaScript is slow!” 



  

Solution

What can we do about it?



  

Can we have better tools?

● Move knowledge about framework internals to 
the tool

● Visualize results at the same semantic level

● Downside: Tools become specific to one 
framework



  

Where do I get these tools?

● Some tooling exist for Qt
● cf. Romain Pokrzywka, Volker Krause, “Effective 

Debugging and Profiling for Qt and Qt Quick”,
Qt Dev Days 2011

● Often no tooling exist for your own frameworks



  

Should I build my own?

● Struggling with complex control flow

● Repeatedly adding the same debug code or printf 
statements

● Complex internal structures that benefit from 
dedicated visualization

● Performance metrics lacking correlation to the 
actual cost cause



  

Approaches

● Built-in diagnostics

● External observers

● Emulators

● IDEs

● API tracing

● Binary instrumentation

● Qt Introspection



  

printf isn't dead yet

● qDebug() operator<< overloads
QDebug operator <<( QDebug d, 
                    const MyType &myObj )

{
        return d << myObj.foo() 
                 << myObj.bar();
}

● Declare outside of namespaces

● Needs to be exported or inline if provided by a library



  

Impact

● Minimal increase in code size

● No runtime impact when not used

● Can be disabled completely at compile time
● QT_NO_DEBUG

● QT_NO_DEBUG_OUTPUT

● QT_NO_WARNING_OUTPUT



  

Built-In Diagnostics

● Enable at compile time or runtime
● preprocessor define

● environment variable

● config file/QSettings

● triggered via IPC

● Typically perform extra checks or provide 
verbose diagnostic output



  

Built-in Diagnostics Examples

● Preprocessor defines
● QIODEVICE_DEBUG, QSSLSOCKET_DEBUG, ... 

● grep for _DEBUG

● Environment Variables
● QT_FLUSH_PAINT

● QDBUS_DEBUG

● grep for getenv



  

Built-In Diagnostics DIY

● Compile-time conditional debug output
#ifndef FOO_DEBUG
#   define myDebug qDebug
#else
#   define myDebug if (false) qDebug
#endif

… 

myDebug(“printf style\n”);
myDebug() << “stream style”;



  

Built-In Diagnostics DIY

● Runtime conditional output

static const int debugLevel =
       qgetenv(“MY_DEBUG”).toInt();
...
if (debugLevel > 3)
    dumpInternalState();

● Requires application restart to activate



  

Built-In Diagnostics DIY

● D-Bus triggered diagnostics

class MyClass : public QObject {
 Q_OBJECT
 Q_CLASSINFO("D-Bus Interface", "com.kdab.debug")
public:
 MyClass() 
 {
  QDBusConnection::sessionBus().
    registerService(“com.kdab.MyApp”);
  QDBusConnection::sessionBus().
    registerObject("/Debug", this,
    QDBusConnection::ExportScriptableSlots);
  …
 }
public slots:
 Q_SCRIPTABLE void dumpInternalState() const
 { … }
}



  

Built-In Diagnostics Impact

● Compile-time diagnostics
● Can be disabled completely

● Ideal for very expensive features

● Runtime diagnostics
● Minimal runtime overhead

● Diagnostics always available



  

Compiled-In Diagnostics

● Not built into framework, but provided 
separately

● Has no access to framework internals

● Example: ModelTest

● Useful for non-trivial diagnostics performed 
using official API



  

External Observers

● Tools using public interfaces to observe what your 
application is doing

● Requires communication or other externally visible 
effects

● Example: qdbusviewer

● Also useful (but not Qt-specific):
● Network sniffer

● Database logging/viewers



  

qdbusviewer



  

External Observers

● No changes required in your application

● Don't require application restart but can be used 
on-demand

● Requires interceptable communication channels
● Problematic with e.g. TLS/SSL

● Example for DIY project: QDataStream viewer



  

Emulators

● Simulate the real environment your application 
runs in

● Makes you independent of hardware or physical 
constraints

● Example: qvfb



  

qvfb



  

Emulators

● Allows replay of recorded input

● Allows easy testing of corner cases and “that 
should never happen” conditions

● Very useful for CI systems



  

Emulators DIY

● Find the right interface
● API-compatible drop-in replacement DLL
● Using existing backend abstractions (e.g. QtSensors)
● IPC or network protocols

● Feed data
● manually, with custom UI
● manually, from code
● from previously recorded file



  

Full IDE

● Fully integrated suite for the entire development 
workflow, including debugging and profiling

● Example: QtCreator for QML

● Usually overkill, but worth considering when 
providing a complex domain specific language
● Existing IDEs (QtCreator, KDevelop, …) can be 

extended by plug-ins



  

QtCreator



  

API Tracing

● Trace all calls (and arguments) to a specific API

● Visualization for the massive amount of data 
gathered

● Approach:
● Intercept API call

● Record call and its arguments

● Call the original method



  

API Tracing Examples

● strace
● Traces all system calls

● apitrace
● Traces OpenGL/Direct3d calls

● http://github.com/apitrace/apitrace

● Qt visualization UI for OpenGL state at an arbitrary 
point in time



  

API Tracing Examples



  

API Tracing DIY

● OS-level system-wide tracing tools:
● DTrace

● SystemTap, perf, uprobes

● POSIX ptrace

● Library pre-loading and forwarding
● LD_PRELOAD, dlsym(RTLD_NEXT, … )

● even more ugly on Windows



  

API Tracing Impact

● Overhead usually comparable to one extra 
function call

● Be prepared to handle large amounts of data

● Requires no modifications on traced code

● Also works if no source code is available



  

Binary Instrumentation

● Interpret or JIT rewrite binary code

● Example: Valgrind suite

● Requires in-depth knowledge of binary code 
execution

● Allows analysis of very low-level details, e.g. for 
memory profiling



  

Binary Instrumentation DIY

● Existing frameworks for binary instrumentation
● Valgrind (http://www.valgrind.org/)

● Pin (http://www.pintool.org/)

● Example use-case: runtime attachable Massif



  

Massif



  

Qt Introspection

● QObject Introspection
● QMetaObject

● signals, slots, properties, enums, object types

● Global hooks
● object creation/destruction

● application start

● Examples: Squish, GammaRay



  

Qt Introspection DIY

● qt_startup_hook()

● Triggered from QCoreApplication constructor

● Allows you to run your diagnostics code early 
inside any Qt application

● Use event filter or object creation hooks to wait 
for interesting events

● Overwriting the hook is platform-specific



  

Qt Introspection DIY

● qt_[add|remove]Object(QObject*)

● Triggered from QObject constructor/destructor
● Too early/late for the virtual table to be complete

● Consider multi-threading

● Only covers QObjects

● Powerful, but slightly dangerous.



  

GammaRay

● GammaRay provides comprehensive 
visualization for various Qt frameworks

● http://www.kdab.com/gammaray

● Free Software (GPL)

● Introspection from start or runtime attaching

● Framework for building Qt introspection tools



  

GammaRay



  

GammaRay



  

Extending GammaRay

● Plug-in based

● Hides the nasty details of the Qt hooks

● Simple API
● thread-safe object creation/destruction notifications, 

delayed until the virtual table exists

● flat or hierarchical object models

● built-in filtering by object types



  

Conclusion

● Increased complexity requires better tooling

● Time invested in tooling easily pays off

● Don't be scared about overhead

● Consider turning your repeatedly added debug 
output into something more reusable :-)



  

Thanks for listening!

Questions?

Volker Krause
volker.krause@kdab.com

KDAB
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