

Domain Specific Debugging Tools

Volker Krause
volker.krause@kdab.com

KDAB

Problem

What's the Problem?

So, where's the bug in your QML?

Invalid read of size 1

 at 0x4C2D9B0: bcmp (in /usr/lib64/valgrind/vgpreload_memcheck-amd64-linux.so)

 by 0x6B33AA6: QOpenGLFunctions::glLinkProgram(unsigned int) (qopenglfunctions.h:1098)

 by 0x6B2FD15: QOpenGLShaderProgram::link() (qopenglshaderprogram.cpp:826)

 by 0x4F83AE1: QSGDefaultDistanceFieldGlyphCache::createBlitProgram() (qsgdefaultdistancefieldglyphcache_p.h:118)

 by 0x4F82D50: QSGDefaultDistanceFieldGlyphCache::resizeTexture(QSGDefaultDistanceFieldGlyphCache::TextureInfo*, int, int)

 by 0x4F8262A: QSGDefaultDistanceFieldGlyphCache::storeGlyphs(QHash<unsigned int, QImage> const&)

 by 0x4F77A81: QSGDistanceFieldGlyphCache::update() (qsgadaptationlayer.cpp:169)

 by 0x4F86449: QSGDistanceFieldGlyphNode::preprocess() (qsgdistancefieldglyphnode.cpp:167)

 by 0x4F690E8: QSGRenderer::preprocess() (qsgrenderer.cpp:378)

 by 0x4F68A06: QSGRenderer::renderScene(QSGBindable const&) (qsgrenderer.cpp:248)

 by 0x4F68975: QSGRenderer::renderScene() (qsgrenderer.cpp:229)

 by 0x4F7B48E: QSGContext::renderNextFrame(QSGRenderer*, unsigned int) (qsgcontext.cpp:270)

 by 0x4FBE833: QQuickWindowPrivate::renderSceneGraph(QSize const&) (qquickwindow.cpp:346)

 by 0x50D0217: QQuickTrivialWindowManager::renderWindow(QQuickWindow*) (qquickwindowmanager.cpp:263)

 by 0x50D076F: QQuickTrivialWindowManager::event(QEvent*) (qquickwindowmanager.cpp:351)

 by 0x5B37DB7: QApplicationPrivate::notify_helper(QObject*, QEvent*) (qapplication.cpp:3619)

 by 0x5B354A9: QApplication::notify(QObject*, QEvent*) (qapplication.cpp:3050)

 by 0x79B9479: QCoreApplication::notifyInternal(QObject*, QEvent*) (qcoreapplication.cpp:748)

 by 0x79BCC86: QCoreApplication::sendEvent(QObject*, QEvent*) (in /home/vkrause/dev/qt5/inst/lib/libQtCore.so.5.0.0)

 by 0x79BA53D: QCoreApplicationPrivate::sendPostedEvents(QObject*, int, QThreadData*) (qcoreapplication.cpp:1349)

 by 0x79BA0FE: QCoreApplication::sendPostedEvents(QObject*, int) (qcoreapplication.cpp:1209)

Address 0x7fa847b93a81 is not stack'd, malloc'd or (recently) free'd

GDB is not enough

● Increasing abstraction

● Asynchronous API

● Distributed architecture

● Runtime interpreted code

● JIT compilers

General Purpose Tools

● Instruction-level debuggers

● printf

● Profilers measuring:
● CPU ticks

● malloc calls

Increasing abstraction

● Examples:
● Qt Model/View

● QStateMachine

● Instruction-level view is too far below semantics

● Debug output triggered too often

Asynchronous API

● Examples:
● QNetworkAccessManager/QNetworkReply

● Job-based APIs

● Hard to follow control flow

Distributed Architecture

● Examples:
● D-Bus

● Even harder to follow control flow

● Profilers don't analyze complexity in IPC
protocol

Runtime Interpreted Code

● Examples:
● QtQuick

● QtWebKit

● Debuggers and profilers analyze interpreter
code

● Hard to correlate issues in interpreter to issues
in interpreted code

JIT-Compiled Code

● Examples:
● QtScript

● QtQuick

● Debuggers and profilers see generated code

● Even harder to correlate issues in generated
code to issues in original QML/JavaScript.

General Purpose Tools

● Inefficient/cumbersome

● Require knowledge of framework internals
● Up to the point of a JIT compiler!

● Can lead to erroneous conclusions
● “JavaScript is slow!”

Solution

What can we do about it?

Can we have better tools?

● Move knowledge about framework internals to
the tool

● Visualize results at the same semantic level

● Downside: Tools become specific to one
framework

Where do I get these tools?

● Some tooling exist for Qt
● cf. Romain Pokrzywka, Volker Krause, “Effective

Debugging and Profiling for Qt and Qt Quick”,
Qt Dev Days 2011

● Often no tooling exist for your own frameworks

Should I build my own?

● Struggling with complex control flow

● Repeatedly adding the same debug code or printf
statements

● Complex internal structures that benefit from
dedicated visualization

● Performance metrics lacking correlation to the
actual cost cause

Approaches

● Built-in diagnostics

● External observers

● Emulators

● IDEs

● API tracing

● Binary instrumentation

● Qt Introspection

printf isn't dead yet

● qDebug() operator<< overloads
QDebug operator <<(QDebug d,
 const MyType &myObj)

{
 return d << myObj.foo()
 << myObj.bar();
}

● Declare outside of namespaces

● Needs to be exported or inline if provided by a library

Impact

● Minimal increase in code size

● No runtime impact when not used

● Can be disabled completely at compile time
● QT_NO_DEBUG

● QT_NO_DEBUG_OUTPUT

● QT_NO_WARNING_OUTPUT

Built-In Diagnostics

● Enable at compile time or runtime
● preprocessor define

● environment variable

● config file/QSettings

● triggered via IPC

● Typically perform extra checks or provide
verbose diagnostic output

Built-in Diagnostics Examples

● Preprocessor defines
● QIODEVICE_DEBUG, QSSLSOCKET_DEBUG, ...

● grep for _DEBUG

● Environment Variables
● QT_FLUSH_PAINT

● QDBUS_DEBUG

● grep for getenv

Built-In Diagnostics DIY

● Compile-time conditional debug output
#ifndef FOO_DEBUG
define myDebug qDebug
#else
define myDebug if (false) qDebug
#endif

…

myDebug(“printf style\n”);
myDebug() << “stream style”;

Built-In Diagnostics DIY

● Runtime conditional output

static const int debugLevel =
 qgetenv(“MY_DEBUG”).toInt();
...
if (debugLevel > 3)
 dumpInternalState();

● Requires application restart to activate

Built-In Diagnostics DIY

● D-Bus triggered diagnostics

class MyClass : public QObject {
 Q_OBJECT
 Q_CLASSINFO("D-Bus Interface", "com.kdab.debug")
public:
 MyClass()
 {
 QDBusConnection::sessionBus().
 registerService(“com.kdab.MyApp”);
 QDBusConnection::sessionBus().
 registerObject("/Debug", this,
 QDBusConnection::ExportScriptableSlots);
 …
 }
public slots:
 Q_SCRIPTABLE void dumpInternalState() const
 { … }
}

Built-In Diagnostics Impact

● Compile-time diagnostics
● Can be disabled completely

● Ideal for very expensive features

● Runtime diagnostics
● Minimal runtime overhead

● Diagnostics always available

Compiled-In Diagnostics

● Not built into framework, but provided
separately

● Has no access to framework internals

● Example: ModelTest

● Useful for non-trivial diagnostics performed
using official API

External Observers

● Tools using public interfaces to observe what your
application is doing

● Requires communication or other externally visible
effects

● Example: qdbusviewer

● Also useful (but not Qt-specific):
● Network sniffer

● Database logging/viewers

qdbusviewer

External Observers

● No changes required in your application

● Don't require application restart but can be used
on-demand

● Requires interceptable communication channels
● Problematic with e.g. TLS/SSL

● Example for DIY project: QDataStream viewer

Emulators

● Simulate the real environment your application
runs in

● Makes you independent of hardware or physical
constraints

● Example: qvfb

qvfb

Emulators

● Allows replay of recorded input

● Allows easy testing of corner cases and “that
should never happen” conditions

● Very useful for CI systems

Emulators DIY

● Find the right interface
● API-compatible drop-in replacement DLL
● Using existing backend abstractions (e.g. QtSensors)
● IPC or network protocols

● Feed data
● manually, with custom UI
● manually, from code
● from previously recorded file

Full IDE

● Fully integrated suite for the entire development
workflow, including debugging and profiling

● Example: QtCreator for QML

● Usually overkill, but worth considering when
providing a complex domain specific language
● Existing IDEs (QtCreator, KDevelop, …) can be

extended by plug-ins

QtCreator

API Tracing

● Trace all calls (and arguments) to a specific API

● Visualization for the massive amount of data
gathered

● Approach:
● Intercept API call

● Record call and its arguments

● Call the original method

API Tracing Examples

● strace
● Traces all system calls

● apitrace
● Traces OpenGL/Direct3d calls

● http://github.com/apitrace/apitrace

● Qt visualization UI for OpenGL state at an arbitrary
point in time

API Tracing Examples

API Tracing DIY

● OS-level system-wide tracing tools:
● DTrace

● SystemTap, perf, uprobes

● POSIX ptrace

● Library pre-loading and forwarding
● LD_PRELOAD, dlsym(RTLD_NEXT, …)

● even more ugly on Windows

API Tracing Impact

● Overhead usually comparable to one extra
function call

● Be prepared to handle large amounts of data

● Requires no modifications on traced code

● Also works if no source code is available

Binary Instrumentation

● Interpret or JIT rewrite binary code

● Example: Valgrind suite

● Requires in-depth knowledge of binary code
execution

● Allows analysis of very low-level details, e.g. for
memory profiling

Binary Instrumentation DIY

● Existing frameworks for binary instrumentation
● Valgrind (http://www.valgrind.org/)

● Pin (http://www.pintool.org/)

● Example use-case: runtime attachable Massif

Massif

Qt Introspection

● QObject Introspection
● QMetaObject

● signals, slots, properties, enums, object types

● Global hooks
● object creation/destruction

● application start

● Examples: Squish, GammaRay

Qt Introspection DIY

● qt_startup_hook()

● Triggered from QCoreApplication constructor

● Allows you to run your diagnostics code early
inside any Qt application

● Use event filter or object creation hooks to wait
for interesting events

● Overwriting the hook is platform-specific

Qt Introspection DIY

● qt_[add|remove]Object(QObject*)

● Triggered from QObject constructor/destructor
● Too early/late for the virtual table to be complete

● Consider multi-threading

● Only covers QObjects

● Powerful, but slightly dangerous.

GammaRay

● GammaRay provides comprehensive
visualization for various Qt frameworks

● http://www.kdab.com/gammaray

● Free Software (GPL)

● Introspection from start or runtime attaching

● Framework for building Qt introspection tools

GammaRay

GammaRay

Extending GammaRay

● Plug-in based

● Hides the nasty details of the Qt hooks

● Simple API
● thread-safe object creation/destruction notifications,

delayed until the virtual table exists

● flat or hierarchical object models

● built-in filtering by object types

Conclusion

● Increased complexity requires better tooling

● Time invested in tooling easily pays off

● Don't be scared about overhead

● Consider turning your repeatedly added debug
output into something more reusable :-)

Thanks for listening!

Questions?

Volker Krause
volker.krause@kdab.com

KDAB

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

