
Qt on Embedded Systems	

13. November 2012
Lars Knoll <lars.knoll@digia.com>

© 2011 Digia Plc 11/19/12

The early years	

• Started on Windows and X11
•  Used native apis
•  All painting done by the

underlying Windowing system
•  Every widget a native window

© 2011 Digia Plc

Embedded systems	

•  1999:
•  240x320 screens on high end embedded systems
•  16MB RAM and ROM
•  Faster processors some HW acceleration for graphics

•  Linux became an interesting option
•  No available UI solution, X11 not suited for embedded systems
•  Linux had a framebuffer
•  We had a prototype:

•  QImagePaintDevice
•  Draw 2d graphics into a raster buffer

© 2011 Digia Plc

Qt Embedded and QWS	

•  Started development in 1999
•  Lean/simple stack

•  Run on 8MB (or less) RAM/ROM

•  windowing system included into the
framework

•  Any app could be the server process

•  Single and multi process modes

•  Software drawing on Linux
framebuffer out of the box

•  Abstractions for limited graphics
acceleration

•  Minimal stack fit onto a 1.4’’ floppy

© 2011 Digia Plc

Qt Palmtop Environment	

•  Just the framework not enough

•  Needed some demo apps: QPE

•  Rebranded as Qtopia a little later

© 2011 Digia Plc

Qtopia	

•  Sharp bought it for their Zaurus PDA in 2001
•  From demo to shipping in 6 months

© 2011 Digia Plc

Industrial embedded	

•  Used all possible combinations
•  From minimal config

•  To all of Qtopia

© 2011 Digia Plc

… Meanwhile in desktop land …	

•  2002: Qt 3 shipped
•  Lots of new features for existing desktop customers

•  Too fat and slow for embedded devices

•  Mainly ignored by embedded customers

•  2005: Qt 4 shipped
•  Brought back most of the required speed for embedded devices

•  New functionality making it interesting again

•  Many Qt/e features migrated into the desktop versions

•  Alien widgets

•  Painting abstraction (QPaintEngine)

© 2011 Digia Plc

IP/VoIP phones, Greenphone	

•  Very demanding UX requirements

•  Touch based

•  Fluid animations

•  Integrated Video

© 2011 Digia Plc

Nokia	

•  2008: Nokia bought Trolltech
•  Fully shifted focus from Desktop to Embedded

•  Performance, performance, performance

•  Symbian and Linux (Maemo/MeeGo)

•  Huge added investment
•  Tooling

•  Mobility APIs

•  Qt went LGPL

© 2011 Digia Plc

Rethinking User interfaces	

•  VoIP and mobile phones showed limits of Qt’s architecture
•  Widgets rectangular items

•  Animations almost impossible

•  No way to realize the UI designs in a clean way

à Two research projects

•  Kinetic project (Oslo)

•  QGraphicsView an existing scene graph

•  Animations, States and Transitions

•  Some added sugar on top of C++

•  QML (Brisbane)

•  More radical approach

•  New XML based language

•  Do we need C++ APIs?

•  Maybe a different scene graph?

© 2011 Digia Plc

Qt Quick (version 1)	

•  Take most of the ideas from Brisbane
•  Change from XML to own language (extension to Javascript)

•  Use QGraphicsView

•  QML Language

•  Javascript based

•  Object trees

•  Declarative syntax

•  Property bindings

•  Optimised for UI design

•  Small C++ API

•  Easy to bind to and extend from C++

© 2011 Digia Plc

Rectangle {
 width: 320
 height: 240;
 property color textColor: “black”
 Text {
 anchors.centeredIn: parent
 text: “Hello World!”
 color: parent.textColor
 }
}

Rethinking window system integration	

•  Symbian port showed that our architecture was flawed
•  A new port of Qt extremely hard to do

•  Took too long

•  QWS reaching it’s limits

•  Perfect in the 90s with limited 2D acceleration

•  OpenGL/OpenVG support very hard to do

•  Porting to other OSes very challenging (VxWorks, QNX)

•  HW adaptation very hard

•  Write complete port of Qt (50k LOC) or

•  Hack Qt/embedded (not much less work)

à Both very error prone

© 2011 Digia Plc

Project Lighthouse	

•  Qt Platform Abstraction (QPA)
•  Clean API to encapsulate the windowing system

•  Released in 4.8

•  Android and iOS ports by 3rd parties prove the design

•  EGL full screen / OpenGL backend with ~2000 LOC

•  Great support for HW acceleration

•  No own windowing system

•  Multi process through e.g. Wayland

© 2011 Digia Plc

… Come Qt 5 …	

•  Completely based on QPA

•  Qt Quick (v2) fully OpenGL (ES) based

•  OpenGL Scene graph

•  Separate rendering thread

•  Fluid 60FPS UIs

•  Separate Qt Widgets and Qt Quick

•  Allow for a leaner stack on embedded devices

à Ideas from embedded have entered mainline Qt and all ports

•  Release timeline for 5.0

•  Beta 2 released 13. Nov.

•  Final in December

© 2011 Digia Plc

QPA options for Linux	

•  DirectFB
•  Blitting acceleration

•  Input handling

•  First port contributed to Qt Project

•  OpenGL support available with some Vendor integration

•  ~ 3000 LOC

•  XCB

•  X11 support

•  ~ 18.000 LOC

•  Minimal and minimal-egl

•  As simple as possible, helps getting started with a custom plugin

•  Experimental plugins

•  KMS, OpenWF, linuxfb

•  EGLFS & Wayland

© 2011 Digia Plc

EGLFS	

•  Full Screen, single surface

•  EGL used for Surface creation

•  OpenGL and SW rasterization for drawing

•  Directly reads from input devices

•  Device discovery through udev

•  Single process only

•  Very easy to integrate

•  ~ 2000 LOC

à Great option for single process UIs if EGL and OpenGL is available

© 2011 Digia Plc

Wayland	

•  Qt Wayland module

•  Works with Wayland 1.0

•  Fully functional QPA plugin for Wayland

•  ~ 7000 LOC

•  Supports Clipboard, DnD, Touch input

•  Qt Compositor API

•  Build your own wayland compositor

•  Makes it very simple to manage surfaces

•  Qt Quick integration, write your Compositor using QML

•  ~ 11.000 LOC

•  Compatible with other wayland clients and servers

à Best solution for multi process environment, integrates with other frameworks

© 2011 Digia Plc

19

Rasberry/Pi	

Demo

© 2011 Digia Plc

HW without OpenGL	

•  No Qt Quick 2

•  Mesa + LLVM Software OpenGL possible

•  Would allow for Qt Quick

•  LLVM untested on ARM (might work with LLVM > 3.1)

Possible QPA plugins:

•  Wayland
•  shared memory buffers

•  DirectFB

•  Linuxfb

•  Xcb (if you want X11)

© 2011 Digia Plc

The future	

•  Wide variety of QPA backends existing today
•  Mac/Cocoa, Windows, QNX/BB10

•  Very easy to get started on a new HW or even new OS

•  The cross platform solution: Add Android and iOS

•  Qt Quick components for Touch
•  Greatly simplifies UI creation

•  Strong focus on embedded use cases &
requirements

•  High quality tooling support

•  Cross compiling, remote debugging

•  Easy deployment

•  Flashing

à Integrated into Qt Creator

© 2011 Digia Plc

Qt on Android	

•  Android port
•  Existing port on QPA for Qt 4.8: Necessitas

•  Bring to Qt 5

•  Fully integrate with existing Android stack

•  Offer a native runtime that keeps compatibility

•  Deployment solution

•  Bring Qt apps into the Android Marketplace

•  Embedded on Android

•  Use Android base layer only

•  Kernel, Drivers, libc, OpenGL ES, Media Framework

•  Dalvik available, but not required (depending on use case)

•  Just starting the work, lots of open questions…

© 2011 Digia Plc

Android port	

© 2011 Digia Plc

Qt Apps

Qt FWs

Embedded on Android	

© 2011 Digia Plc

Optional
Qt Apps

Qt FWs

25

Qt on Nexus	

Demo

© 2011 Digia Plc

Thank you!	

© 2011 Digia Plc

