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Who am I ?
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Objective

Overview of existing tools

Get feedback and feature requests
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Quick Poll

How many of you use Qt Creator for Qt Quick

 application development ?
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Qt Creator Command Line

Coding
QML/JS Editor

Qt Quick Designer

Debugging

Profiling

C++/QML Debugger
Inspector
Console

QML Profiler QML Profiler

Console APIs

Quick Overview

   Available in Qt 5.0.0 and onwards.
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Version Info

1) Qt Creator 2.6.0

2) Qt Quick 1 – Qt 4.8.x and Qt 5.0.0
and Qt Quick 2 – Qt 5.0.0
(Deviations are indicated with     )



8

Coding

do {

var pill = getPill()

} while (pill.color === Qt.color(“blue”))
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Coding: QML/JS Editor

It understands the QML code model

Code faster
Code navigation
Auto-completion
Qt Quick toolbars

Reduce errors
Syntax check

Maintain code
Code refactor

Easy to read
Semantic Highlight

Qt Quick 
toolbar

Syntax Checks
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Coding: Qt Quick Designer

Code faster
Minimize manual coding
UI component library
Visual feedback

Quick Prototype

Easy to use
Lets you create apps 
even if you are not a 
coder.

Currently supports Qt Quick 1. Support for Qt Quick 2 is ongoing. 

UI Component Library
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Debugging
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Debugging: Overview

Client Server architecture

TCP/IP

Developer MachineDevice running Qt Quick application

1) A TCP server is started 
that listens to connections on 
a specified port.

3) Server advertises available 
services.

An open port presents a security risk. 
Ensure that the port is properly 
protected by a firewall.

2) A TCP client connects to 
specified port.

4) Service clients connect to  
respective services. 
(Only one client per service is accepted. 
All clients share the same port.)
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Debugging: Steps

1) Enable TCP Server
Compile with qmake argument

CONFIG+=declarative_debug for Qt Quick 1 apps or 
CONFIG+=qml_debug for Qt Quick 2 apps.

2) Specify Port
● Pass -qmljsdebugger=port:xxxx as a command line argument.
● [,host:<ip address>] optional arg specifies the IP address
● [,block] optional arg blocks the GUI thread until a profiling 

client is connected to the TCP server.

3) Attach a Profiling Client
Connect a profiling client to the TCP server at known address 
and port.
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Debugging: C++/QML Debugger 
(1/2) 

Press the Debug Button   
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Debugging: C++/QML Debugger 
(2/2)

To debug a running application that has QML debugging enabled, 
specify the port and the corresponding kit.
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Debugging: Inspector (1/2)

Inspect the QML object 
tree when debugger is not 
on a debug break.

Modify properties of QML 
elements.
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Debugging: Inspector (2/2)

'Application on top' tool tries to ensure the debugee is always 
the top level window.

'Select' tool selects UI elements in the view. It can be used to 
identify a particular element and view its properties.

'Zoom' tool provides zoom in and zoom out functionality.

(Debugger Toolbar) Qt Quick tools

For Qt Quick 2 applications, Select tool also provides zoom functionality. The Zoom tool 
is hence disabled.
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Debugging: Console

Console APIs
~ Firebug console APIs
Logging (console.log(), console.warn(), etc.)
Profiling (console.time(), console.timeEnd(), etc.)
console.assert(), console.trace(), etc.

Interactive console in Qt Creator
Evaluate expressions
Filter messages
Find functionality

Context for evaluation

Filter messages

Console tab
Search text

For Qt Quick 1 applications, a subset of console APIs is available.

Enter expressions here
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Debugging: Salient features

Modify register values of locals.

Modify property values of QML objects.

Watch expressions.

Evaluate JavaScript expressions.

Break on JavaScript exceptions.

Select, zoom UI elements in the application view.

   Available in Qt 5.0.0 and onwards.
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Profiling
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Profiling: Overview

Re-uses Debugging Client Server architecture

TCP/IP

Developer MachineDevice running Qt Quick application

1) A TCP server is started 
that listens to connections on 
a specified port.

3) Server advertises available 
profiling services.

An open port presents a security risk. 
Ensure that the port is properly 
protected by a firewall.

2) A TCP client connects to 
specified port.

4) Profiling service clients 
connect to  respective profiling 
services. 
(Only one client per service is accepted. 
All clients share the same port.)
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Profiling: Steps

1) Enable TCP Server
Compile with qmake argument

CONFIG+=declarative_debug for Qt Quick 1 apps or 
CONFIG+=qml_debug for Qt Quick 2 apps.

2) Specify Port
● Pass -qmljsdebugger=port:xxxx as a command line argument.
● [,host:<ip address>] optional arg specifies the IP address
● [,block] optional arg blocks the GUI thread until a profiling 

client is connected to the TCP server.

3) Attach a Profiling Client
Connect a profiling client to the TCP server at known address 
and port.
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Profiling: QML Profiler (1/2)

 

Press the QML Profiler Start Button    

Analyze Mode

Start Stop Toggle Recording
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Profiling: QML Profiler (2/2)

To profile a running application that has QML debugging enabled, 
specify the host and port.
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Profiling: Standalone Profiler

To start an application with the profiler,
qmlprofiler [options] [program] [program args]

To profile a running application that has QML debugging enabled, 
qmlprofiler [options] -attach [hostname]

Options
● -fromStart to record as soon as the QML engine is started.
● -p [-port] <number> specifies the TCP/IP port to use.

Commands
● r [record] to toggle recording.
● q [quit] to quit.

Profile data is saved in XML format.

      Available in Qt 5.0.0 and onwards.
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Profiling: Salient features

Overview of events on a timeline.

Zoom in or out in Timeline view.

Step through events in either chronological or reverse 
chronological order.

Detailed view of events in tabular form.

Filter events within a time period.

View callers and callees of functions.

Profile JavaScript code.

   Available in Qt 5.0.0 and onwards.
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Profiling: Some use cases

Debug Code!
Find binding loops in your code.

Optimize Code.
Find binding evaluations during animations and state changes.
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Qt Creator Command Line

Coding
QML/JS Editor

Qt Quick Designer

Debugging

Profiling

C++/QML Debugger
Inspector
Console

QML Profiler QML Profiler

Console APIs

Summary

   Available in Qt 5.0.0 and onwards.
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Documentation
http://doc.qt.digia.com/qtcreator/index.html

THANK YOU

Contact

Qt mailing lists
Aurindam Jana – aurindam.jana@digia.com
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Troubleshooting: Debugger / 
Profiler

Ensure 'Enable QML Debugging' is checked in Build Settings. The 
default is checked.

Projects 
Mode

Build & 
Run

Build Settings

Enable QML debugging
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Troubleshooting: Debugger

Ensure 'Enable QML' is checked in Run Settings.

Projects Mode

Build & Run

Run Settings

Enable QML
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TroubleShooting: Inspector

To enable Inspector view, ensure 'Show QML object tree' is 
checked in Debugger Options. The default is checked.

Debugger 
Options

Show QML object tree

General tab
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