
Usage of QML Tools

Coding, Debugging & Performance

Aurindam Jana
Digia

2

QML

Aurindam Jana
IRC: #qt #qt-creator: auri__

Who am I ?

3

Objective

Overview of existing tools

Get feedback and feature requests

4

Contents

Coding
QML/JS Editor
Qt Quick Designer

Debugging
C++/QML Debugging
Inspector
Console

Profiling
QML Profiler

Q&A

5

Quick Poll

How many of you use Qt Creator for Qt Quick

 application development ?

6

Qt Creator Command Line

Coding
QML/JS Editor

Qt Quick Designer

Debugging

Profiling

C++/QML Debugger
Inspector
Console

QML Profiler QML Profiler

Console APIs

Quick Overview

 Available in Qt 5.0.0 and onwards.

7

Version Info

1) Qt Creator 2.6.0

2) Qt Quick 1 – Qt 4.8.x and Qt 5.0.0
and Qt Quick 2 – Qt 5.0.0
(Deviations are indicated with)

8

Coding

do {

var pill = getPill()

} while (pill.color === Qt.color(“blue”))

9

Coding: QML/JS Editor

It understands the QML code model

Code faster
Code navigation
Auto-completion
Qt Quick toolbars

Reduce errors
Syntax check

Maintain code
Code refactor

Easy to read
Semantic Highlight

Qt Quick
toolbar

Syntax Checks

10

Coding: Qt Quick Designer

Code faster
Minimize manual coding
UI component library
Visual feedback

Quick Prototype

Easy to use
Lets you create apps
even if you are not a
coder.

Currently supports Qt Quick 1. Support for Qt Quick 2 is ongoing.

UI Component Library

11

Debugging

12

Debugging: Overview

Client Server architecture

TCP/IP

Developer MachineDevice running Qt Quick application

1) A TCP server is started
that listens to connections on
a specified port.

3) Server advertises available
services.

An open port presents a security risk.
Ensure that the port is properly
protected by a firewall.

2) A TCP client connects to
specified port.

4) Service clients connect to
respective services.
(Only one client per service is accepted.
All clients share the same port.)

13

Debugging: Steps

1) Enable TCP Server
Compile with qmake argument

CONFIG+=declarative_debug for Qt Quick 1 apps or
CONFIG+=qml_debug for Qt Quick 2 apps.

2) Specify Port
● Pass -qmljsdebugger=port:xxxx as a command line argument.
● [,host:<ip address>] optional arg specifies the IP address
● [,block] optional arg blocks the GUI thread until a profiling

client is connected to the TCP server.

3) Attach a Profiling Client
Connect a profiling client to the TCP server at known address
and port.

14

Debugging: C++/QML Debugger
(1/2)

Press the Debug Button

15

Debugging: C++/QML Debugger
(2/2)

To debug a running application that has QML debugging enabled,
specify the port and the corresponding kit.

16

Debugging: Inspector (1/2)

Inspect the QML object
tree when debugger is not
on a debug break.

Modify properties of QML
elements.

17

Debugging: Inspector (2/2)

'Application on top' tool tries to ensure the debugee is always
the top level window.

'Select' tool selects UI elements in the view. It can be used to
identify a particular element and view its properties.

'Zoom' tool provides zoom in and zoom out functionality.

(Debugger Toolbar) Qt Quick tools

For Qt Quick 2 applications, Select tool also provides zoom functionality. The Zoom tool
is hence disabled.

18

Debugging: Console

Console APIs
~ Firebug console APIs
Logging (console.log(), console.warn(), etc.)
Profiling (console.time(), console.timeEnd(), etc.)
console.assert(), console.trace(), etc.

Interactive console in Qt Creator
Evaluate expressions
Filter messages
Find functionality

Context for evaluation

Filter messages

Console tab
Search text

For Qt Quick 1 applications, a subset of console APIs is available.

Enter expressions here

19

Debugging: Salient features

Modify register values of locals.

Modify property values of QML objects.

Watch expressions.

Evaluate JavaScript expressions.

Break on JavaScript exceptions.

Select, zoom UI elements in the application view.

 Available in Qt 5.0.0 and onwards.

20

Profiling

21

Profiling: Overview

Re-uses Debugging Client Server architecture

TCP/IP

Developer MachineDevice running Qt Quick application

1) A TCP server is started
that listens to connections on
a specified port.

3) Server advertises available
profiling services.

An open port presents a security risk.
Ensure that the port is properly
protected by a firewall.

2) A TCP client connects to
specified port.

4) Profiling service clients
connect to respective profiling
services.
(Only one client per service is accepted.
All clients share the same port.)

22

Profiling: Steps

1) Enable TCP Server
Compile with qmake argument

CONFIG+=declarative_debug for Qt Quick 1 apps or
CONFIG+=qml_debug for Qt Quick 2 apps.

2) Specify Port
● Pass -qmljsdebugger=port:xxxx as a command line argument.
● [,host:<ip address>] optional arg specifies the IP address
● [,block] optional arg blocks the GUI thread until a profiling

client is connected to the TCP server.

3) Attach a Profiling Client
Connect a profiling client to the TCP server at known address
and port.

23

Profiling: QML Profiler (1/2)

Press the QML Profiler Start Button

Analyze Mode

Start Stop Toggle Recording

24

Profiling: QML Profiler (2/2)

To profile a running application that has QML debugging enabled,
specify the host and port.

25

Profiling: Standalone Profiler

To start an application with the profiler,
qmlprofiler [options] [program] [program args]

To profile a running application that has QML debugging enabled,
qmlprofiler [options] -attach [hostname]

Options
● -fromStart to record as soon as the QML engine is started.
● -p [-port] <number> specifies the TCP/IP port to use.

Commands
● r [record] to toggle recording.
● q [quit] to quit.

Profile data is saved in XML format.

 Available in Qt 5.0.0 and onwards.

26

Profiling: Salient features

Overview of events on a timeline.

Zoom in or out in Timeline view.

Step through events in either chronological or reverse
chronological order.

Detailed view of events in tabular form.

Filter events within a time period.

View callers and callees of functions.

Profile JavaScript code.

 Available in Qt 5.0.0 and onwards.

27

Profiling: Some use cases

Debug Code!
Find binding loops in your code.

Optimize Code.
Find binding evaluations during animations and state changes.

28

Qt Creator Command Line

Coding
QML/JS Editor

Qt Quick Designer

Debugging

Profiling

C++/QML Debugger
Inspector
Console

QML Profiler QML Profiler

Console APIs

Summary

 Available in Qt 5.0.0 and onwards.

29

Documentation
http://doc.qt.digia.com/qtcreator/index.html

THANK YOU

Contact

Qt mailing lists
Aurindam Jana – aurindam.jana@digia.com

30

Troubleshooting: Debugger /
Profiler

Ensure 'Enable QML Debugging' is checked in Build Settings. The
default is checked.

Projects
Mode

Build &
Run

Build Settings

Enable QML debugging

31

Troubleshooting: Debugger

Ensure 'Enable QML' is checked in Run Settings.

Projects Mode

Build & Run

Run Settings

Enable QML

32

TroubleShooting: Inspector

To enable Inspector view, ensure 'Show QML object tree' is
checked in Debugger Options. The default is checked.

Debugger
Options

Show QML object tree

General tab

33

Acknowledgements

http://qt-projects.org – Qt and Qt Creator icons
http://en.wikipedia.org/wiki/FC_Barcelona – FC Barcelona icon
http://www.apple.com – iOS icon
http://www.clker.com – Berlin skyline
http://svengraph.deviantart.com – Tools icon
http://www.damieng.com - Tablet icon
http://www.fasticon.com - Display off icon
http://www.cosmicwise.com – Swat fly image
http://turbomilk.com - Black asterisk icon
http://www.saveyourinnertortoise.com - Tortoise with rocket image

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

