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Jeremy Lainé

●Using Qt since 2001 (desktop, mobile, embedded)

●Occasional Qt contributor (QDnsLookup)

●Head of software development at Wifirst (ISP)

●Lead developer of a IM / VoIP app for Wifirst 
customers
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Overview

1. Why serve applications over the network?

2. QML network transparency

3. Building your application

4. Deploying your application
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1. Why serve applications over the network?



 

 

Typical application deployment

●Development

●Packaging

●In-house beta testing

●Push application to all users

●Repeat!

Each iteration requires per-
platform installers and an update.
Each iteration requires per-
platform installers and an update.
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Options for handling updates

●Manual updates
●Most users cannot be bothered to update

●You end up with a heterogeneous installed base
●Your cool new features don't reach your users!

●Automatic updates
●Not all platforms have an “application store”

●Each platform requires specific packaging wok

●Usually requires elevated permissions (Windows UAC..)
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Updates are hard!

Not convinced? Look at the Chrome 
and Firefox codebases!
Not convinced? Look at the Chrome 
and Firefox codebases!
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How about QML apps?

●C++ wrapper code:
● has usual deployment constraints

●QML / Javascript code and resources:
●fully cross-platform

●conveniently split into multiple files

●can be loaded over the network by QtQuick
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 Some benefits

●Faster iteration and testing

●Fix bugs after release!

●Progressive update roll-out

●Split testing for UI changes

●Time-limited changes (Christmas specials!) 



10

2. QML network transparency
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Loading QML from C++

QDeclarativeView (Qt4) and QQuickView (Qt5) 
support loading from an HTTP URL

int main(int argc, char *argv[])
{
  QApplication app(argc, argv);

  QQuickView view;
  view.setSource(QUrl(“http://foo.com/main.qml”));
  view.show();

  return app.exec();
}
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QML “loader” elements

Built-in QML elements with a “source” property 
support HTTP URLs

●Image

●Loader

●FontLoader

Image {
  source: “http://foo.com/bar.img”
}
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Relative URLs

Relative URLs are resolved relative to the QML 
document's URL

You can use the same code locally and remotely!You can use the same code locally and remotely!

Image {
  source: “head.jpg”
}

file:///home/bob/foo.qml

Image {
  source: “head.jpg”
}

http://example.com/foo.qml

file:///home/bob/head.jpg

http://example.com/head.jpg
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QML network transparency

●QML type declarations can be served over HTTP, 
but you need to list your types in a “qmldir” file:

●Javascript code can be served over HTTP

Button 1.0 Button.qml
CheckBox 1.0 CheckBox.qml

import “scripts/utils.js” as Utils
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Translations

●Loading translations from QML is missing

●You can provide your own TranslationLoader and do

●A proposal for including it in Qt5

https://codereview.qt-project.org/#change,31864

TranslationLoader {
source: “i18n/my_translation.qm”

onStatusChanged: {
Console.log(“status is: “ + status);

}
}
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3. Building your application
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General recommendations

●Split models and presentation

●The C++ code still needs traditional updates
●Make the loader robust

●Keep the API simple

●Keep the API stable

●Serve all the rest on the fly
●QML and Javascript code

●Resources (images, fonts, translations)
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Application architecture

Application Plugins

main.qml

Button.qml

background.png

fontawesome.ttf

Local C++ code

Remote content
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The application

●Creates the QML view

●Sets up the QNetworkAccessManager

●Loads a single “root” QML file over the network

●Can fallback to local files for offline use
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Application / setting up QNAM

●Give your application a User-Agent
●Helps track usage, or serve different content

●QtWebkit generated request already have a UA

●Specify the preferred language (Accept-Language)

●Set up a persistent network cache

●Configure HTTP pipelining
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Application / caching

●QtQuick caches components + pixmaps (memory)

●QNAM supports “If-Modified-Since” but needs a 
persistent disk cache

class MyFactory : public QQmlNetworkAccessManagerFactory
{
public:
    QNetworkAccessManager* create(QObject* parent)
    {
        QNetworkAccessManager* manager = new QNetworkAccessManager(parent);
        QNetworkDiskCache* cache = new QNetworkDiskCache(manager);
        cache->setCacheDirectory(“/some/directory/”);
        manager->setCache(cache);
        return manager;
    }
};

view->engine()->setNetworkAccessManagerFactory(new MyFactory());
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Application / HTTP pipelining

●Splitting QML into files: good but incurs overhead

●HTTP/1.1 allows sending multiple requests 
without waiting for replies

●Particularly useful for high latency links

●Qt5 uses pipelining for all resources

●Qt4 only uses pipelining for pixmaps and fonts
● subclass QNetworkAccessManager if needed
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Application / offline use

●At startup, fall back to a bundled copy of your 
QML code if loading from network fails

●Catching errors later is harder..

void MyView::onStatusChanged(QQuickView::Status status)
{

if (status == QQuickView::Error && useNetwork) {
useNetwork = false;
setSource(QUrl(“qrc://main.qml”));

}
}
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Plugins

●Define data models and scriptable objects

●Keep the C++ code simple : if something can be 
done in QML instead, do it!

●Keep the API stable : if you change it, you will 
probably need different QML files
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QML content

●Welcome to an asynchronous world!

var component = Qt.createComponent(source);
if (component.status == Component.Loading)

component.statusChanged.connect(finishCreation);
else

finishCreation();

function finishCreation() {
if (component.status == Component.Ready) {

var object = component.createObject(parent);
}

}

var component = Qt.createComponent(source);
var object = component.createObject(parent); BAD

GOOD
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QML content

●Review your timing assumptions!
●Do not depend on objects loading in a set order

●Use Component.onCompleted with care

●Having lots of icons can be a problem, consider 
using web fonts like FontAwesome
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4. Deploying your application
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Hosting the QML code

●You have all the usual web hosting options
●Run your own servers (nginx, apache, ..)

●Use cloud services

●Do load-balancing, fail-over, etc..

●QML files can be 100% static files, or even 
generated on the fly
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Version your root URL

●Plan for multiple versions of your C++ app, as the 
API will probably change, e.g. :

http://example.com/myapp/1.0/main.qml

http://example.com/myapp/1.1/main.qml

●Alternatively, switch on User-Agent
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Cache “consistency”

●Consider two related files Dialog.qml and 
Button.qml, which must be in the same version to 
work

●Caching can cause inconsistency

Dialog.qml
version 1

App start 1 App start 2

Button.qml
version 1

time

Button.qml
version 1

User click 1 User click 2

Dialog.qml
version 2

FAIL!
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Cache “consistency”

●Your main.qml can load all subsequent contents 
from a subdirectory to “version” the QML code

●Layout:
●main.qml

●RELEASE_ID/Button.qml

●RELEASE_ID/Dialog.qml
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Security

●Make use of HTTPS to avoid your application 
loading malicious code (DNS hijacking)

●Make sure your certificates are valid!

●Some platforms or custom certificates will require 
adding your CA certificates

QSslSocket::addDefaultCaCertificates(“./myca.pem”);
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Performance considerations

●Enable gzip compression for QML and JS files

●Set an Expires header to avoid QNAM re-checking 
all files on startups

●Serve from a cookie-less domain
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5. Questions
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Get the code

●Source code for the Wifirst IM / VoIP client

git clone git://git.wifirst.net/wilink.git
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