
Serving QML applications over the network

Jeremy Lainé
Wifirst

2 / 35

Jeremy Lainé

●Using Qt since 2001 (desktop, mobile, embedded)

●Occasional Qt contributor (QDnsLookup)

●Head of software development at Wifirst (ISP)

●Lead developer of a IM / VoIP app for Wifirst
customers

3 / 35

Overview

1. Why serve applications over the network?

2. QML network transparency

3. Building your application

4. Deploying your application

4

1. Why serve applications over the network?

Typical application deployment

●Development

●Packaging

●In-house beta testing

●Push application to all users

●Repeat!

Each iteration requires per-
platform installers and an update.
Each iteration requires per-
platform installers and an update.

6 / 35

Options for handling updates

●Manual updates
●Most users cannot be bothered to update

●You end up with a heterogeneous installed base
●Your cool new features don't reach your users!

●Automatic updates
●Not all platforms have an “application store”

●Each platform requires specific packaging wok

●Usually requires elevated permissions (Windows UAC..)

7 / 35

Updates are hard!

Not convinced? Look at the Chrome
and Firefox codebases!
Not convinced? Look at the Chrome
and Firefox codebases!

8 / 35

How about QML apps?

●C++ wrapper code:
● has usual deployment constraints

●QML / Javascript code and resources:
●fully cross-platform

●conveniently split into multiple files

●can be loaded over the network by QtQuick

9 / 35

 Some benefits

●Faster iteration and testing

●Fix bugs after release!

●Progressive update roll-out

●Split testing for UI changes

●Time-limited changes (Christmas specials!)

10

2. QML network transparency

11 / 35

Loading QML from C++

QDeclarativeView (Qt4) and QQuickView (Qt5)
support loading from an HTTP URL

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);

 QQuickView view;
 view.setSource(QUrl(“http://foo.com/main.qml”));
 view.show();

 return app.exec();
}

12 / 35

QML “loader” elements

Built-in QML elements with a “source” property
support HTTP URLs

●Image

●Loader

●FontLoader

Image {
 source: “http://foo.com/bar.img”
}

13 / 35

Relative URLs

Relative URLs are resolved relative to the QML
document's URL

You can use the same code locally and remotely!You can use the same code locally and remotely!

Image {
 source: “head.jpg”
}

file:///home/bob/foo.qml

Image {
 source: “head.jpg”
}

http://example.com/foo.qml

file:///home/bob/head.jpg

http://example.com/head.jpg

14 / 35

QML network transparency

●QML type declarations can be served over HTTP,
but you need to list your types in a “qmldir” file:

●Javascript code can be served over HTTP

Button 1.0 Button.qml
CheckBox 1.0 CheckBox.qml

import “scripts/utils.js” as Utils

15 / 35

Translations

●Loading translations from QML is missing

●You can provide your own TranslationLoader and do

●A proposal for including it in Qt5

https://codereview.qt-project.org/#change,31864

TranslationLoader {
source: “i18n/my_translation.qm”

onStatusChanged: {
Console.log(“status is: “ + status);

}
}

16

3. Building your application

17 / 35

General recommendations

●Split models and presentation

●The C++ code still needs traditional updates
●Make the loader robust

●Keep the API simple

●Keep the API stable

●Serve all the rest on the fly
●QML and Javascript code

●Resources (images, fonts, translations)

18 / 35

Application architecture

Application Plugins

main.qml

Button.qml

background.png

fontawesome.ttf

Local C++ code

Remote content

19 / 35

The application

●Creates the QML view

●Sets up the QNetworkAccessManager

●Loads a single “root” QML file over the network

●Can fallback to local files for offline use

20 / 35

Application / setting up QNAM

●Give your application a User-Agent
●Helps track usage, or serve different content

●QtWebkit generated request already have a UA

●Specify the preferred language (Accept-Language)

●Set up a persistent network cache

●Configure HTTP pipelining

21 / 35

Application / caching

●QtQuick caches components + pixmaps (memory)

●QNAM supports “If-Modified-Since” but needs a
persistent disk cache

class MyFactory : public QQmlNetworkAccessManagerFactory
{
public:
 QNetworkAccessManager* create(QObject* parent)
 {
 QNetworkAccessManager* manager = new QNetworkAccessManager(parent);
 QNetworkDiskCache* cache = new QNetworkDiskCache(manager);
 cache->setCacheDirectory(“/some/directory/”);
 manager->setCache(cache);
 return manager;
 }
};

view->engine()->setNetworkAccessManagerFactory(new MyFactory());

22 / 35

Application / HTTP pipelining

●Splitting QML into files: good but incurs overhead

●HTTP/1.1 allows sending multiple requests
without waiting for replies

●Particularly useful for high latency links

●Qt5 uses pipelining for all resources

●Qt4 only uses pipelining for pixmaps and fonts
● subclass QNetworkAccessManager if needed

23 / 35

Application / offline use

●At startup, fall back to a bundled copy of your
QML code if loading from network fails

●Catching errors later is harder..

void MyView::onStatusChanged(QQuickView::Status status)
{

if (status == QQuickView::Error && useNetwork) {
useNetwork = false;
setSource(QUrl(“qrc://main.qml”));

}
}

24 / 35

Plugins

●Define data models and scriptable objects

●Keep the C++ code simple : if something can be
done in QML instead, do it!

●Keep the API stable : if you change it, you will
probably need different QML files

25 / 35

QML content

●Welcome to an asynchronous world!

var component = Qt.createComponent(source);
if (component.status == Component.Loading)

component.statusChanged.connect(finishCreation);
else

finishCreation();

function finishCreation() {
if (component.status == Component.Ready) {

var object = component.createObject(parent);
}

}

var component = Qt.createComponent(source);
var object = component.createObject(parent); BAD

GOOD

26 / 35

QML content

●Review your timing assumptions!
●Do not depend on objects loading in a set order

●Use Component.onCompleted with care

●Having lots of icons can be a problem, consider
using web fonts like FontAwesome

27

4. Deploying your application

28 / 35

Hosting the QML code

●You have all the usual web hosting options
●Run your own servers (nginx, apache, ..)

●Use cloud services

●Do load-balancing, fail-over, etc..

●QML files can be 100% static files, or even
generated on the fly

29 / 35

Version your root URL

●Plan for multiple versions of your C++ app, as the
API will probably change, e.g. :

http://example.com/myapp/1.0/main.qml

http://example.com/myapp/1.1/main.qml

●Alternatively, switch on User-Agent

30 / 35

Cache “consistency”

●Consider two related files Dialog.qml and
Button.qml, which must be in the same version to
work

●Caching can cause inconsistency

Dialog.qml
version 1

App start 1 App start 2

Button.qml
version 1

time

Button.qml
version 1

User click 1 User click 2

Dialog.qml
version 2

FAIL!

31 / 35

Cache “consistency”

●Your main.qml can load all subsequent contents
from a subdirectory to “version” the QML code

●Layout:
●main.qml

●RELEASE_ID/Button.qml

●RELEASE_ID/Dialog.qml

32 / 35

Security

●Make use of HTTPS to avoid your application
loading malicious code (DNS hijacking)

●Make sure your certificates are valid!

●Some platforms or custom certificates will require
adding your CA certificates

QSslSocket::addDefaultCaCertificates(“./myca.pem”);

33 / 35

Performance considerations

●Enable gzip compression for QML and JS files

●Set an Expires header to avoid QNAM re-checking
all files on startups

●Serve from a cookie-less domain

34

5. Questions

35 / 35

Get the code

●Source code for the Wifirst IM / VoIP client

git clone git://git.wifirst.net/wilink.git

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

