
Building 3D Scenes With QML

Building 3D OpenGL Scenes with Qt 5 and
QML

Krzysztof Krzewniak

Integrated Computer Solutions (ICS)

Talk overview

● Using the QQuickWidnow's OpenGL Context to
render 3D objects

● Handling the camera

● Adding scene content

● Using framebuffer objects to write filters

● Render the scene into a QQuickItem

The target for today

Hijacking the context

Hijacking the context

Be nice when hijacking

● Keep the rendering in the QSG thread

● Leave the context as you found it

Hijacking the context

Be nice when hijacking

● Keep the rendering in the QSG thread

● Leave the context as you found it

Or else ...

Hijacking the context

● Connect your rendering slot to QQuickWindow's
before/after rendering signals

Use QQuickItem::itemChange

look for QQuickItem::ItemSceneChange

● Stop QQuickWindow from erasing your 3D scene

Use QQuickWindow::setClearBeforeRendering

(only if rendering your contents underneath QML)

Hijacking the context

Code sample (Scene::itemChange)

Camera

● OpenGL Camera abstraction:

– 4X4 Model View Matrix

– 4X4 Projection Matrix
● Exposed as:

– Camera x, y, z position

– Camera pitch, yaw, roll

– Projection type (Orthogonal, Perspective)

– Field of view and clipping planes

– Viewport width and height

Camera

Code sample (core/Camera, Camera/main.qml)

Demo (Camera)

Populating the scene

What do we need to populate the scene?

Populating the scene

What do we need to populate the scene?

● A scene item abstraction

Populating the scene

What do we need to populate the scene?

● A scene item abstraction

● A way to add items to the scene

The Scene item abstraction

Scene item properties:

● The item's x, y and z position

● Scale

● Material (keeping it simple):

– Shader paths and custom uniforms

Scene item API:

● makeRenderPass

● cleanup

Code sample (core/SceneObject)

Adding items to the scene

Define a QQmlListProperty<SceneObject> property:

● appendSceneObject

● countSceneObjects

● sceneObjectAt

● clearSceneObjects

Code sample (core/Scene, SingleObject/main.qml)

Demo (SingleObject)

Scene filters

Increasing your scene's appeal by adding additional
specialized render passes using
QFrameBufferObjects

What we need:

● A render filter abstraction

● A way to add render filters to the scene

● Have the scene use render filters

Render filter abstraction 1/2

Render filter public API:

● hook – makes a filter intercept render calls

● unhook – makes a filter stop intercepting render
calls

● preRender – makes a filter do its custom work

● render – makes a filter render out its results

Code sample (core/RenderFilter)

Render filter abstraction 2/2

Render filter protected API:

● createFrameBuffer - make a filter create its FBO

● bindFrameBuffer – make a filter bind its FBO

● makePreRender – make a filter do its magic

● makeRender – make a filter render its results

Code sample (filters/LightFilter, Filters/main.qml)

Demo (Filters)

Render into a QQuickItem

With all of the above in place it is very easy to have
our scene or its portion rendered into a QQuickItem.

● Use a RenderFilter to redirect rendering into a FBO

● Use a QQuickItem and QSGSimpleTextureNode to
render into QML

Code sample (core/textureoutputfilter)

Done

Code sample (LightDemo/main.qml)

Demo (LightDemo)

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20

