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Talk overview

* Using the QQuickWidnow's OpenGL Context to
render 3D objects

* Handling the camera
* Adding scene content
* Using framebuffer objects to write filters

* Render the scene into a QQuickltem
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The target for today
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Hijacking the context
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Hijacking the context

Be nice when hijacking
* Keep the rendering in the QSG thread

* |eave the context as you found it
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Hijacking the context

Be nice when hijacking
* Keep the rendering in the QSG thread
* |eave the context as you found it

Orelse...
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Hijacking the context

* Connect your rendering slot to QQuickWindow's
before/after rendering signals

Use QQuickltem::itemChange
look for QQuickltem::ltemSceneChange
e Stop QQuickWindow from erasing your 3D scene
Use QQuickWindow::setClearBeforeRendering

(only if rendering your contents underneath QML)
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Hijacking the context

Code sample (Scene::itemChange)
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Camera

 OpenGL Camera abstraction:

- 4X4 Model View Matrix
— 4X4 Projection Matrix
 Exposed as:

- Camerax,y, z position
- Camera pitch, yaw, roll
- Projection type (Orthogonal, Perspective)

- Fleld of view and clipping planes
- Viewport width and height
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Camera

Code sample (core/Camera, Camera/main.gml)

Demo (Camera)
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Populating the scene

What do we need to populate the scene?




Qt Developer
Days 2013

Populating the scene

What do we need to populate the scene?

e Ascene item abstraction
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Populating the scene

What do we need to populate the scene?
* Ascene item abstraction

* Away toadd items to the scene




Qt Developer
Days 2013

The Scene item abstraction

Scene item properties:
* Theitem'sx,y and z position
* Scale
e Material (keeping it simple):
— Shader paths and custom uniforms
Scene item API:
* makeRenderPass

* cleanup
Code sample (core/SceneObiject) lm
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Adding items to the scene

Define a QQmilListProperty<SceneObject> property:
* appendSceneObject

* countSceneObjects

* sceneQObjectAt

* clearSceneObjects

Code sample (core/Scene, SingleObject/main.gmil)
Demo (SingleObject)
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Scene filters

Increasing your scene's appeal by adding additional
specialized render passes using
QFrameBufferObjects

What we need:
* Arender filter abstraction
* Away to add render filters to the scene

e Have the scene use render filters
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Render filter abstraction 1/2

Render filter public API:
* hook — makes a filter intercept render calls

* unhook — makes afilter stop intercepting render
calls

* preRender — makes afilter do its custom work

e render - makes a filter render out its results

Code sample (core/RenderFilter)
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Render filter abstraction 2/2

Render filter protected API:
e createFrameBuffer - make afilter create its FBO
 bindFrameBuffer - make afilter bind its FBO

* makePreRender - make afilter do its magic

e makeRender - make afilter render its results

Code sample (filters/LightFilter, Filters/main.gml)

Demo (Filters)
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Render into a QQuickltem

With all of the above in place it is very easy to have
our scene or its portion rendered into a QQuickltem.

* Use a RenderFilter toredirect rendering intoa FBO

e Use a QQuickltem and QSGSimpleTextureNode to
render into QML

Code sample (core/textureoutputfilter)
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Code sample (LightDemo/main.gml)
Demo (LightDemo)
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