Building 3D Scenes With QML

Building 3D OpenGL Scenes with Qt 5 and
QML

Krzysztof Krzewniak

Integrated Computer Solutions (ICS)




Qt Developer
Days 2013

Talk overview

* Using the QQuickWidnow's OpenGL Context to
render 3D objects

* Handling the camera
* Adding scene content
* Using framebuffer objects to write filters

* Render the scene into a QQuickltem




0\t Developer - e
&8 Days2013 ——

The target for today




Qt Developer
Days 2013

Hijacking the context




Qt Developer
Days 2013

Hijacking the context

Be nice when hijacking
* Keep the rendering in the QSG thread

* |eave the context as you found it




Qt Developer

Days2013

Hijacking the context

Be nice when hijacking
* Keep the rendering in the QSG thread
* |eave the context as you found it

Orelse...




Qt Developer
Days 2013

Hijacking the context

* Connect your rendering slot to QQuickWindow's
before/after rendering signals

Use QQuickltem::itemChange
look for QQuickltem::ltemSceneChange
e Stop QQuickWindow from erasing your 3D scene
Use QQuickWindow::setClearBeforeRendering

(only if rendering your contents underneath QML)




Qt Developer
Days 2013

Hijacking the context

Code sample (Scene::itemChange)




Qt Developer

Days2013

Camera

 OpenGL Camera abstraction:

- 4X4 Model View Matrix
— 4X4 Projection Matrix
 Exposed as:

- Camerax,y, z position
- Camera pitch, yaw, roll
- Projection type (Orthogonal, Perspective)

- Fleld of view and clipping planes
- Viewport width and height




Qt Developer
Days 2013

Camera

Code sample (core/Camera, Camera/main.gml)

Demo (Camera)




Qt Developer
Days 2013

Populating the scene

What do we need to populate the scene?




Qt Developer
Days 2013

Populating the scene

What do we need to populate the scene?

e Ascene item abstraction




Qt Developer
Days 2013

Populating the scene

What do we need to populate the scene?
* Ascene item abstraction

* Away toadd items to the scene




Qt Developer
Days 2013

The Scene item abstraction

Scene item properties:
* Theitem'sx,y and z position
* Scale
e Material (keeping it simple):
— Shader paths and custom uniforms
Scene item API:
* makeRenderPass

* cleanup
Code sample (core/SceneObiject) lm




Qt Developer
Days 2013

Adding items to the scene

Define a QQmilListProperty<SceneObject> property:
* appendSceneObject

* countSceneObjects

* sceneQObjectAt

* clearSceneObjects

Code sample (core/Scene, SingleObject/main.gmil)
Demo (SingleObject)




Qt Developer
Days 2013

Scene filters

Increasing your scene's appeal by adding additional
specialized render passes using
QFrameBufferObjects

What we need:
* Arender filter abstraction
* Away to add render filters to the scene

e Have the scene use render filters




Qt Developer
Days 2013

Render filter abstraction 1/2

Render filter public API:
* hook — makes a filter intercept render calls

* unhook — makes afilter stop intercepting render
calls

* preRender — makes afilter do its custom work

e render - makes a filter render out its results

Code sample (core/RenderFilter)




Qt Developer
Days 2013

Render filter abstraction 2/2

Render filter protected API:
e createFrameBuffer - make afilter create its FBO
 bindFrameBuffer - make afilter bind its FBO

* makePreRender - make afilter do its magic

e makeRender - make afilter render its results

Code sample (filters/LightFilter, Filters/main.gml)

Demo (Filters)




Qt Developer
Days 2013

Render into a QQuickltem

With all of the above in place it is very easy to have
our scene or its portion rendered into a QQuickltem.

* Use a RenderFilter toredirect rendering intoa FBO

e Use a QQuickltem and QSGSimpleTextureNode to
render into QML

Code sample (core/textureoutputfilter)




Qt Developer

Days2013

Code sample (LightDemo/main.gml)
Demo (LightDemo)




	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20

