
Testing of embedded and
mobile Qt and QML

Applications

Qt Developer Days 2013

by Harri Porten

About me

 Name: Harri Porten
 Company: froglogic GmbH
 Position: co-founder and CTO
 Qt usage: since 1997 (KDE project)
 Qt development: Software Engineer at Trolltech

Overview

 Types of Testing
 Why Automate?
 Challenges on embedded and mobile platforms
 Live demo

Types of Testing

 Unit Testing
 Performance Testing
 ...
 Functional GUI Testing

- Black/Gray Box Testing
- Assume user's point of view
- Automate to spot regressions
- Combinable with profiling, coverage and other analysis and monitoring tools

Why Automate?

 Faster
- Get results quicker
- Run more tests in the same time

 Trivial to replay in different configurations
 Reliable, reproducible and repeatable
 Relieve testers from monotonous tasks

But...

 Automating GUI tests is not trivial
 Typical reason for test effort failures: wrong test approach

Platform Challenge

Qt runs on:

 Windows (various versions)
 Linux (desktop and embedded)
 Mac OS X
 Android
 Boot to Qt
 iOS
 QNX
 VxWorks
 Nucleus
 ….

Toolkit Challenge

Those may play a role:

 QWidgets
 QML elements
 Native controls
 Web!

Most challenging: combinations of the above.

Platform Solution 1/2

Biggest help from....

Qt itself

Platform Solution 2/2

Additional help through:

 Resolution independence
 Synchronization methods
 UI abstractions
 Reusable functions/objects
 Mock objects

Virtualization

Target hardware
- the real thing
- limited number
- harder to automate

Virtual systems
- VMware, Virtual Box, qemu
- emulator vs. simulator
- easy replication, resets and automation
- Simulation of hardware features, limitations and events.

Capture and replay

 Produces massive test scripts
 Not readable
 Not maintainable
 No code re-use possible
 Brittle against changes in the UI

 Solution: Scripting & Refactoring

Script Languages

Beware of “vendor scripts” or “macros”!

Open and powerful choices exist:
 JavaScript
 Python
 Perl
 Ruby
 Tcl
 ...

Factorization

function main() {
 launchApplication(“clean”);
 loadData(“sample.dat”);
 changeParameter(“ParameterA”, 10);
 runCalculation();
 dumpData(“out.txt”);
 compareData(“out.txt”, “expected.txt”);
}

GUI Objects

 login = LoginScreen()
 login.tryLogin(“myuser”, “wrongpassword”)
 test.compare(login.success, False)
 test.compare(login.message, “Wrong password”)
 login.tryLogin(“myuser”, “realpassword”)
 test.compare(login.success, True)

Scripted Approach vs. Capture & Replay

Screen coordinates

 Addresses screen positions and not UI controls
 Breaks with UI layout changes
 Depends on GUI style and platform
 Scripts hard to understand

 Solution: Address objects based on properties

Reliance on screen captures

 No knowledge of GUI controls
 Too much heuristics
 Depends on irrelevant data (colors, fonts, etc.)
 Many incorrect fails / errors

 Solution: Identify on and compare object properties

UI Styles

Tab Control

UI Styles

File Selectors

And mobile and embedded..???

Example: Widget Recognition Options

Very BAD:

 MouseClick(132, 367)

BAD:

 MouseClick('Tree', 30, 136)

BAD:

 MouseClick(

 FindObjByImg('item-image.png'))

GOOD:

 ClickItem('Tree', 'Event')

Help from Developers

 QObject::setObjectName()
 QML “id” property

Architecture

Location vs. Remote

Demo

Live

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24

