
Testing of embedded and
mobile Qt and QML

Applications

Qt Developer Days 2013

by Harri Porten

About me

 Name: Harri Porten
 Company: froglogic GmbH
 Position: co-founder and CTO
 Qt usage: since 1997 (KDE project)
 Qt development: Software Engineer at Trolltech

Overview

 Types of Testing
 Why Automate?
 Challenges on embedded and mobile platforms
 Live demo

Types of Testing

 Unit Testing
 Performance Testing
 ...
 Functional GUI Testing

- Black/Gray Box Testing
- Assume user's point of view
- Automate to spot regressions
- Combinable with profiling, coverage and other analysis and monitoring tools

Why Automate?

 Faster
- Get results quicker
- Run more tests in the same time

 Trivial to replay in different configurations
 Reliable, reproducible and repeatable
 Relieve testers from monotonous tasks

But...

 Automating GUI tests is not trivial
 Typical reason for test effort failures: wrong test approach

Platform Challenge

Qt runs on:

 Windows (various versions)
 Linux (desktop and embedded)
 Mac OS X
 Android
 Boot to Qt
 iOS
 QNX
 VxWorks
 Nucleus
 ….

Toolkit Challenge

Those may play a role:

 QWidgets
 QML elements
 Native controls
 Web!

Most challenging: combinations of the above.

Platform Solution 1/2

Biggest help from....

Qt itself

Platform Solution 2/2

Additional help through:

 Resolution independence
 Synchronization methods
 UI abstractions
 Reusable functions/objects
 Mock objects

Virtualization

Target hardware
- the real thing
- limited number
- harder to automate

Virtual systems
- VMware, Virtual Box, qemu
- emulator vs. simulator
- easy replication, resets and automation
- Simulation of hardware features, limitations and events.

Capture and replay

 Produces massive test scripts
 Not readable
 Not maintainable
 No code re-use possible
 Brittle against changes in the UI

 Solution: Scripting & Refactoring

Script Languages

Beware of “vendor scripts” or “macros”!

Open and powerful choices exist:
 JavaScript
 Python
 Perl
 Ruby
 Tcl
 ...

Factorization

function main() {
 launchApplication(“clean”);
 loadData(“sample.dat”);
 changeParameter(“ParameterA”, 10);
 runCalculation();
 dumpData(“out.txt”);
 compareData(“out.txt”, “expected.txt”);
}

GUI Objects

 login = LoginScreen()
 login.tryLogin(“myuser”, “wrongpassword”)
 test.compare(login.success, False)
 test.compare(login.message, “Wrong password”)
 login.tryLogin(“myuser”, “realpassword”)
 test.compare(login.success, True)

Scripted Approach vs. Capture & Replay

Screen coordinates

 Addresses screen positions and not UI controls
 Breaks with UI layout changes
 Depends on GUI style and platform
 Scripts hard to understand

 Solution: Address objects based on properties

Reliance on screen captures

 No knowledge of GUI controls
 Too much heuristics
 Depends on irrelevant data (colors, fonts, etc.)
 Many incorrect fails / errors

 Solution: Identify on and compare object properties

UI Styles

Tab Control

UI Styles

File Selectors

And mobile and embedded..???

Example: Widget Recognition Options

Very BAD:

 MouseClick(132, 367)

BAD:

 MouseClick('Tree', 30, 136)

BAD:

 MouseClick(

 FindObjByImg('item-image.png'))

GOOD:

 ClickItem('Tree', 'Event')

Help from Developers

 QObject::setObjectName()
 QML “id” property

Architecture

Location vs. Remote

Demo

Live

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24

