
Attila Csipa
@achipa
Qt DevDays
Berlin, 08.10.2013

Fast QML UI prototyping for platforms

WITHOUT Qt/QtQuick support

● What (Fast UI Prototyping without QtQuick)

● Why do it?

● Why NOT do it?

● How to do it?

● Case study – Nokia Asha

● Case study – Console UI

Session content

● Terse, but readable syntax

● Declarative UI

● Quick iteration cycles

QtQuick + QML = Declarative + terse syntax + quick iteration

However, not all platforms have (good) Qt(Quick) support

Fast UI development

Policy
● No interpreted/dynamic code

● No V8/JS engine

● Because someone
said “NO”

I want QtQuick, but…

The swimsuit police checking the length of a suit, 1922

No hardware accelerated
OpenGL (ES) capability
(or drivers)

● A hard requirement for QtQuick 2.x

I want QtQuick, but...

A bicycle with 12 rockets mounted on the back wheel. ~1930s

● Resource limitations
● Not enough memory

● Not enough bandwidth

● Not enough disk space

● Not enough…

I want QtQuick, but...

Cheese “sandwich” served on the Sao Paolo – Manaus TAM flight

● No native look and feel

● No native QtQuick-based component set

● No Integration with target platform

I want QtQuick, but…

● Business angle

● Technology angle

● Development angle

So why do it?

• Gazillion of non-Qt(Quick) capable devices
• A lot of those without UI prototyping tools
• Foot in the door! (follow-up projects)
• Accessibility (where not yet covered by Qt)
• (For fame and glory)

Why do it?
Business angle

● Minimize resource usage in case of remote UIs

● Be able to chose UI tech best suited for user interaction

● State of Qt port on target platform not a showstopper

● Multi-UI applications
● Usable both locally with a GUI, and remotely (via telnet/SSH)

Why do it?
Tech angle

● Reuse knowledge of QML

● Complement lacking IDEs with QtCreator
● Syntax highlighting, autocomplete, help, potentially debugging

● Single language interface between developer & designer

● Less people need to know platform specifics

● Faster (less painful?)
design iterations

Why do it?
Development angle

Helmet test, ca 1912

● Maintenance burden

● Hard to upstream

● Flexibility

● There is a reason QtQuick(2)
exists, we are talking
primarily about
PROTOTYPING

● “World doesn’t need
another piece of crap”
Dan Dodge, Qt DevDays QNX Keynote

Why not do it?

The last four couples standing in a dance marathon. Chicago, c. 1930

● Workflow

● Prerequisites

● Advantages

● Disadvantages

● Problem Domain

The approaches – analysis

● Roll your own (QtQuick)

● Client side QML

● Code Generation

● [your idea here – the previous ones are just examples!]

Think out of the box!

Example approaches

QML Types Provided By The QtQml Module

The QtQml module provides the definition and implementation of various convenience

types which can be used with the QML language, including some elementary QML types

which can provide the basis for further extensions to the QML language.

The QtQml module provides the QtObject and Component object types which may be

used in QML documents. These types are non-visual and provide building-blocks for

extensions to QML.

Workflow – simple, exactly the same as with QtCreator and QtQuick!

Approach #1 Roll your own

● Prerequisites
● Qt on target platform, with functional QtQml

● Advantages:
● Leverage JavaScript and bindings via Qt

● Easy event handling (signals/slots)

● QML debugging from QtCreator

● Disadvantages:
● Requires Qt and QtQml on target platform

Approach #1 Roll your own

● Suitable for simple problem domains
● Text/console mode

● CDK/ncurses interface

● Custom hardware (LED magic!)
● Beagleboard, blinkenlights

Roll your own
Applicable problem domain

Projekt Blinkenlights, Berlin, 2001 - view from Berliner Fernsehturm

Photo by Tim Pritlove

● Create QML in QtCreator

● Run
● Strip import statements and any JS

● Deploy resulting QML file sync with device

● Via File system or

● Via Network protocol/socket

● Application on device (re)loads QML and constructs UI
● Feels almost like live-editing!

● If you do want live-editing, you will need to save state/values!

● Rinse and repeat

Approach #2 Client side QML

● Prerequisites
● Shared data channel to client (network, storage…)

● Implemented (or wrapped) component toolkit

● Advantages
● Does not require Qt on target platform at all!

● Disadvantages
● Only for really basic UIs

● Lot of work (as no code reuse can happen)

● No JavaScript or bindings

● Difficult to debug

● Very good understanding of target platform required

Approach #2 Client side QML

● Platforms with no Qt support

● Static UI design (no JS!)

● Mockups

Client side QML
Applicable problem domain

public void constructUI(final byte[] JSONdata) {
JSONObject o;
try {

o = new JSONObject(new String(JSONdata));
} catch (JSONException ex) {

L.e("bytes are not a JSON object", "featURL", ex);
return null;

}

try {
final JSONObject feed = ((JSONObject) o).getJSONObject(“ApplicationWindow");
entries = o.getJSONArray(“Options");
for (int i = 0; i < entries.length(); i++) {

final JSONObject m = entries.getJSONObject(i);
final String OptionLabel = m.getJSONObject(“Option").get(“text”);
displayable.addCommands(new Command(OptionLabel, Command.ITEM, 1));

}
if (entries.length() > 1)

displayable.addCommandListener(this);

} catch (JSONException e) {
L.e("JSON no ApplicationWindow", "featURL", e);

}
}

Client side QML
Example: Java ME with Tantalum

● Create QML in QtCreator

● Run
● Component output constructs source code based on QML

● ApplicationWindow (or QtCreator platform plugin) compiles code

● Packaging

● Deploy to device/simulator

● Execute on device (if possible)

● Live-edit-like development possible, like in previous case
(if code can be loaded dynamically on target platform)

● Rinse and repeat

Approach #3 Code generation

● Prerequisites
● Qt and target platform *TOOLS* running on same device

● Advantages
● Customizability

● Disadvantages
● JavaScript and a suitable binding availability not guaranteed

● Complexity

● Maintenance burden

Approach #3 Code generation

● Platforms with no Qt support at all

● Light logic can be included, client platform permitting
● Simple bindings can be simulated

● JavaScript may or may not be present

Code generation is in effect…

… source-code level (de)serialization!

Code generation
Applicable problem domain

Nokia Asha Software Platform

Case Study #1

Series40 (which is NOT Symbian)

A Coca Cola company delivery truck in Knoxville, 1909.

First device in 1999,
the Nokia 7110

(but don’t worry,
Qt is actually
4 years older ;)

1.5 billion devices by January 2012

650 million active (plenty of even touch devices)

Freemium and ads DO work

A few years later…

North London Derby between Arsenal and Tottenham Hotspur at Highbury, 1934

But the world changed

Women on motorcycles in Great Britain, 1930s

=
Series40 Hardware adaptation

+

Smarterphone middleware

+

Swipe UI

New Nokia Asha

• Nokia Asha SDK 1.0 (Java ME)
• Java ME MIDP 2.1, CLDC 1.1
• Optional JSRs
• Nokia APIs
• Max JAR file size: 5 Mb
• Max Java Heap: 3 Mb

• Nokia Asha web app tools 3.0.0

• Xpress Web App Builder 1.0

Nokia Asha Developer Offering

Feeling resource constrained yet?

Under 8 megs of application RAM, no native code, no OpenGL

What is Qt doing in this story?

…let’s take a closer look before we jump to conclusions

Train wreck at Montparnasse Station. Paris, 1895.

Canvas LCDUI LWUIT

Understanding Java ME UI

The key: native look and feel

36

• High-level components

• Nokia UI API

• Asha look & feel

• No customizability

• (except CustomItem)

LCDUI

Simplicity can be an advantage

Displayable

ScreenCanvas

With chrome Full screen Alert List Form TextBox

Choice

Group

Date

Field

Text

Field

Gauge String

Item

Image

Item

Custom

Item

Spacer

Implicit choice Exclusive choice Multiple choice

Which approach to use?
Case study #1 Nokia Asha

• Custom components
• No Qt/QtQml

• No native look and feel

• Too large memory footprint

• Slow JavaScript performance

• Code generation
• Java ME has no reflection (or classloaders)

• Still, possible with application reloads

• Client side QML
• JSON parser exists (f.ex as part of Tantalum)

• Native look and feel, even fairly simple with LCDUI

…

Form form = new Form(“Hello world”);

Image image = null;

try {

image = Image.createImage(file);

}

catch (NullPointerException npe) {

System.out.println("No file name specified");

}

catch (IOException ioe) {

System.out.println("Image not found: " + file);

}

form.append(“First!”);

form.append(image);

form.addCommand(Commands.BACK);

form.setCommandListener(this);

Display.getDisplay(this).setCurrent(list);

…

3 classes… 6 methods… 260 lines of code…

LCDUI (Java ME) vs QML

import com.nokia.asha.lcdui 1.0

ApplicationWindow {

Form {

header: “Hello World!”

StringItem { text: “First!” }

}

Image { src: “hello.png” }

Options: [

Option {

text: “Back”

type: BACK

}

]

}

}

…That’s all!

The first successful run

Annie Edison Taylor
The first person to survive going over Niagara Falls in a barrel, in 1901

Raspberry PI

Qt-enabled Linux distros available

ARM11 + OpenGL ES

+

X-Bee Radio module

Superior LOS range – up to 48km

9600 bps data rate

Case study #2
Embedded Remote Sensing

• Command line interfaces – Console UIs
● Interfaces based on [n|pd]curses or Newt, CDK, NDK++

● Pretty old, none declarative – scripted at best (dialog)

● …but still useful…

CONNECT 9600

• Low resource usage
- Bandwidth

(ideal for SSH)

- Memory

- Distributable size

Also a bit resource constrained

Cheese “sandwich” served on the Sao Paolo – Manaus TAM flight

• Short for Curses Development Kit

http://www.tldp.org/HOWTO/NCURSES-Programming-HOWTO/tools.html

19.1.3. Conclusion

All in all, CDK is a well-written package of widgets, which if

used properly can form a strong frame work for developing

complex GUI.

Let’s pick a toolkit – CDK

http://www.tldp.org/HOWTO/NCURSES-Programming-HOWTO/tools.html

21 curses-rendered (text mode) widgets

Console UI – CDK

Alphalist Button Buttonbox Calendar Dialog

Entry
Field

File
Viewer

File
Selector

Scale Slider

Graph Histogram Item List Label Matrix

Marquee
Pulldown

Menu
Template

Console UI – CDK

Which approach to use?
Case study #2 Embedded remote sensing solution

• Custom components
• Qt/QtQml present

• Widgets present (CDK)

• Simple enough UI for memory/JS considerations

• Platform does not have a “native look and feel” = our choice

• Code generation
• Large number of configurable widgets = complexity

• No JavaScript

• Client side QML
• Large number of configurable widgets

• More effort than custom components

• JSON parser exists

CDKSCREEN *cdkscreen;

CDKLABEL *demo;

WINDOW *cursesWin;

const char *mesg[4];

cursesWin = initscr ();

cdkscreen = initCDKScreen (cursesWin);

initCDKColor ();

mesg[0] = "</5><#UL><#HL(30)><#UR>";

mesg[1] = "</5><#VL(10)>Hello World!<#VL(10)>";

mesg[2] = "</5><#LL><#HL(30)><#LR>";

demo = newCDKLabel (cdkscreen,

CDKparamValue (¶ms, 'X', CENTER),

CDKparamValue (¶ms, 'Y', CENTER),

(CDK_CSTRING2) mesg, 3,

CDKparamValue (¶ms, 'N', TRUE),

CDKparamValue (¶ms, 'S', TRUE));

setCDKLabelBackgroundAttrib (demo, COLOR_PAIR (2));

CDK (native) vs QML

import org.cdk.widgets 1.0

ApplicationWindow {

Label {

anchors {

horizontalcenter: parent.horizontalcenter

verticalcenter: parent.verticalcenter }

width: 30

height: 10

text: “Hello World!”

border: true

bordercolor: 5

color: 2

}

}

● The Web

● Android (via declarative XML)

● Windows 8 (via XAML)

● [Favorite hardcore platform here]

Potential targets

Men shaving, ~1940s

It’s not about what platform Qt supports…

…It’s about where you can take Qt with you

Takeaway

Questions?

Fast QML UI prototyping for platforms

WITHOUT Qt/QtQuick support

Thank you!

Attila Csipa

@achipa

All images from @HistoricalPics or WikiMedia Commons under CC BY-(NC)-SA

