

A Qt-based GENIVI Stack
Johan Thelin, Pelagicore

Johan Thelin

● Founded 2009

● Offices in Gothenburg and München

Open Source Infotainment

Enabling Great Design

A Changing Business

● Cost ratio hardware / software

● In the old days, a T1 sells a box with software

● Software contains much OEM specifics

● Who should owns the software?

● Who should make the software?

User Expectations

CC-BY Travis Goodspeed – http://www.flickr.com/photos/travisgoodspeed/

The User

● Roaming user profiles

– Your next car

– Family cars

– Rental cars

– Car pooling

● Who owns the user?

– Google?

– OEM?

Selling More Stuff

● Selling vehicle functions

● Selling apps

● Selling data (maps)

● etc

Deployment

● Many screens

– Instrument cluster

– Heads-up Display

– Central head unit

– Rear-seat entertainment nodes

● Combinations

Apps

● Downloadable dynamic contents

– A new way to make money

– Grow platform features over time

● Scary

– How to validate the whole system

– Legal requirements – and indemnification

– Who develops?

What is GENIVI?

GENIVI is a non-profit industry alliance committed to driving
the broad adoption of an In-Vehicle Infotainment (IVI)

open-source development platform.

The alliance aims to align requirements, deliver reference
implementations, offer certification programs, and foster a

vibrant open-source IVI community.

Our work will result in shortened development cycles, faster
time-to market, and reduced costs for companies developing

IVI equipment and software.

Expert Groups

● Automotive

● CE Connectivity

● HMI Application Framework

● Location Based Services

● Media and Graphics

● Networking

● System Infrastructure

Open Source

● Focuses on specifying a Linux based system

● Reduce fragmentation and reduce cost

● Utilize existing functionality

– Avoid reimplementing everything for every project

● Utilize common needs with other verticals

– Media playback, bluetooth, base os, etc

System Compliance

● An evolving compliance specification

● What components to use for what purpose
– Placeholders – there is a need

– Abstract – use these interfaces

– Specific – use this component

● Priorities: mandatory or optional

● Goal: to be able to move components between platforms

...and for Apps

● Works with GENIVI

– Work in progress!

– Specify application dependencies and APIs

– Make it possible to build a common eco system for
applications

Adopting Components

● Selects and adopts components from the community
– connman

– bluez

– systemd

– Linux kernel

– etc

● Cooperates with the upstream project to adapt to the use case

● Compliance usually focus on interfaces – Abstract Components

Developing Components

● Automotive middleware is not the obvious playing
ground of open source hacking
– Audio Manager

– Diagnostic Log and Trace

– Layer Management

– etc

● Not only for automotive
– d-bus optimizations – AF_BUS

– tracker-ivi

http://projects.genivi.org/

IPC Abstractions

● Automotive loves communication buses and
distributed systems

– CAN, LIN, MOST, FlexRay, Ethernet, d-bus, etc

– Freely move software components between ECUs

ECU ECU

C1 C2 C3 C4 C5 C6

IPC Abstractions

● Franca IDL
– Describe the component interfaces

● CommonAPI C++
– Generator and support for talking to

Franca IDL interfaces (API)

– Reference run-time based on D-Bus (ABI)

● Possible to change IPC mechanism by
replacing the run-time shared object

● We do a Qt wrapper generator based
on Franca IDL / CommonAPI C++

Component

CommonAPI C++

Run-time (IPC specific)

IDL

Franca IDL to QObject

class ... : public QObject {
Q_OBJECT

 Q_PROPERTY(quint16 currentTrack
 READ currentTrack
 WRITE setCurrentTrack
 NOTIFY currentTrackChanged)

public:

 Q_INVOKABLE play(quint16 trackId);

 Q_INVOKABLE nextTrack();

 Q_INVOKABLE previousTrack();

signals:

 void endOfPlaylist();

};

The GENIVI Stack

● Focusing at the platform

– No apps

– Middleware focus

– Some OS adaptations

– No BSP

Applications

Middleware

Base Operating System

Board Support Package

Components

Layer Manager
Diagnostic Log

and Trace
Node State
Manager

Node Start-up
Manager

Persistency
User Profile

ManagerAudio Manager ...

● Examples from GENIVI

AF_BUS
Kernel config
e.g. cgroups

...

Yocto

● GENIVI has two base lines Yocto and Baserock

● We work with Yocto

– Based on OpenEmbedded

– Recipies

– Builds rootfs image, sysroot, cross compiler, etc

https://www.yoctoproject.org/

Layers

● Yocto works with layers

– Recipies (.bb)

– Patches (.bbappend)

– Are prioritized for patch order

● You build an image recipie with
top level items, and the rest gets
pulled in as dependencies

Base Distro (e.g. poky)

BSP

Feature A

Feature B

Feature C

Project Configuration

meta-ivi

● Layer for Yocto with IVI components

● Based on GENIVI compliance

● Makes it easy to get started

http://git.yoctoproject.org/cgit/cgit.cgi/meta-ivi

Qt?

● Where does Qt fit?

– Everywhere!

Qt?

● Where does Qt fit?

– Everywhere!

● More specific?

– Applications

– Compositor

– Services

Qt for Applications

● Qt and QtQuick rocks for building graphical
applications!

● We can generate service proxies from Franca
IDL

● Simply wrap in models / proxys for ease of use
from declarative

Qt as Compositor

● Build a Wayland compositor using QtWayland

● But, layer manager?

– Needs support for the layer-manager extension

– Available as weston-ivi, but needs to be
reimplemented through Qt

Qt for Services

● It is dead easy to write services using Qt

● Using the Qt D-Bus bindings

– Expose QObject instances

– We're working on doing the same from Franca IDL

The Pelagicore Stack

● We build on a GENIVI / Yocto base

● Adding
– Services, e.g. Application

Manager, tracker-ivi, etc

– Configurations, e.g. audio
routing rules, etc

– Application run-time
environments

– Applications

● Mostly using Qt!

Application Manager

● Built using Qt

● The Wayland compositor

● Provides information for
– audio focus

– access arbitration of shared
resources

– etc

● Launching applications in
various run-time environments

● Installing and updating applications

Run-times

● Native code
– Can be run in a container

● QtQuick with access to the platform services

– Provide a common set of QML plugins for platform access

– Possible to pre-load the run-time to reduce start-up times

● HTML5 apps
– Using Qt WebKitWebEngine

– Vehicle data APIs are specified by GENIVI

– Platform access and toolkit bindings are needed

Applications

● Core set of applications
– Home screen

– App store

– Settings

– System wide search

– Browser

– Music player

– Video player

– Games

– Tuner

– Integrated streaming services, e.g. Spotify, Pandora, etc

– Navigation

– 3D vehicle status view

– etc

Automotive

● Conservative niche

– Legal requirements

– Standards compliance

– Development processes

● The value change and ownership is changing

– User expectations

– Cost of software

● Qt fits here

– Both in apps and system software

Qt and GENIVI

This is what is happening right now!

Thank you!
johan.thelin@pelagicore.com

www.pelagicore.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

