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● Founded 2009

● Offices in Gothenburg and München

Open Source Infotainment

Enabling Great Design



  

A Changing Business

● Cost ratio hardware / software

● In the old days, a T1 sells a box with software

● Software contains much OEM specifics

● Who should owns the software?

● Who should make the software?



  

User Expectations

CC-BY Travis Goodspeed – http://www.flickr.com/photos/travisgoodspeed/



  

The User

● Roaming user profiles

– Your next car

– Family cars

– Rental cars

– Car pooling

● Who owns the user?

– Google?

– OEM?



  

Selling More Stuff

● Selling vehicle functions

● Selling apps

● Selling data (maps)

● etc



  

Deployment

● Many screens

– Instrument cluster

– Heads-up Display

– Central head unit

– Rear-seat entertainment nodes

● Combinations



  

Apps

● Downloadable dynamic contents

– A new way to make money

– Grow platform features over time

● Scary

– How to validate the whole system

– Legal requirements – and indemnification

– Who develops?



  

What is GENIVI?

GENIVI is a non-profit industry alliance committed to driving 
the broad adoption of an In-Vehicle Infotainment (IVI) 

open-source development platform.

The alliance aims to align requirements, deliver reference 
implementations, offer certification programs, and foster a 

vibrant open-source IVI community.

Our work will result in shortened development cycles, faster 
time-to market, and reduced costs for companies developing 

IVI equipment and software.



  

Expert Groups

● Automotive

● CE Connectivity

● HMI Application Framework

● Location Based Services

● Media and Graphics

● Networking

● System Infrastructure



  

Open Source

● Focuses on specifying a Linux based system

● Reduce fragmentation and reduce cost

● Utilize existing functionality

– Avoid reimplementing everything for every project

● Utilize common needs with other verticals

– Media playback, bluetooth, base os, etc



  

System Compliance

● An evolving compliance specification

● What components to use for what purpose
– Placeholders – there is a need

– Abstract – use these interfaces

– Specific – use this component

● Priorities: mandatory or optional

● Goal: to be able to move components between platforms



  

...and for Apps

● Works with GENIVI

– Work in progress!

– Specify application dependencies and APIs

– Make it possible to build a common eco system for 
applications



  

Adopting Components   

● Selects and adopts components from the community
– connman

– bluez

– systemd

– Linux kernel

– etc

● Cooperates with the upstream project to adapt to the use case

● Compliance usually focus on interfaces – Abstract Components



  

Developing Components         

● Automotive middleware is not the obvious playing 
ground of open source hacking
– Audio Manager

– Diagnostic Log and Trace

– Layer Management

– etc

● Not only for automotive
– d-bus optimizations – AF_BUS

– tracker-ivi

http://projects.genivi.org/



  

IPC Abstractions

● Automotive loves communication buses and 
distributed systems

– CAN, LIN, MOST, FlexRay, Ethernet, d-bus, etc

– Freely move software components between ECUs

ECU ECU

C1 C2 C3 C4 C5 C6



  

IPC Abstractions

● Franca IDL
– Describe the component interfaces

● CommonAPI C++
– Generator and support for talking to 

Franca IDL interfaces (API)

– Reference run-time based on D-Bus (ABI)

● Possible to change IPC mechanism by 
replacing the run-time shared object

● We do a Qt wrapper generator based 
on Franca IDL / CommonAPI C++

Component

CommonAPI C++

Run-time (IPC specific)

IDL



  

Franca IDL to QObject      

class ... : public QObject {
Q_OBJECT

     Q_PROPERTY(quint16 currentTrack 
        READ currentTrack 
        WRITE setCurrentTrack 
        NOTIFY currentTrackChanged)

public:

    Q_INVOKABLE play(quint16 trackId);

    Q_INVOKABLE nextTrack();

    Q_INVOKABLE previousTrack();

signals:

    void endOfPlaylist();

};



  

The GENIVI Stack

● Focusing at the platform

– No apps

– Middleware focus

– Some OS adaptations

– No BSP

Applications

Middleware

Base Operating System

Board Support Package



  

Components

Layer Manager
Diagnostic Log 

and Trace
Node State
Manager

Node Start-up 
Manager

Persistency
User Profile 

ManagerAudio Manager ...

● Examples from GENIVI

AF_BUS
Kernel config
e.g. cgroups

...



  

Yocto

● GENIVI has two base lines Yocto and Baserock

● We work with Yocto

– Based on OpenEmbedded

– Recipies

– Builds rootfs image, sysroot, cross compiler, etc

https://www.yoctoproject.org/



  

Layers

● Yocto works with layers

– Recipies (.bb)

– Patches (.bbappend)

– Are prioritized for patch order

● You build an image recipie with 
top level items, and the rest gets 
pulled in as dependencies

Base Distro (e.g. poky)

BSP

Feature A

Feature B

Feature C

Project Configuration



  

meta-ivi

● Layer for Yocto with IVI components

● Based on GENIVI compliance

● Makes it easy to get started

http://git.yoctoproject.org/cgit/cgit.cgi/meta-ivi



  

Qt?

● Where does Qt fit?

– Everywhere!



  

Qt?

● Where does Qt fit?

– Everywhere!

● More specific?

– Applications

– Compositor

– Services



  

Qt for Applications

● Qt and QtQuick rocks for building graphical 
applications!

● We can generate service proxies from Franca 
IDL

● Simply wrap in models / proxys for ease of use 
from declarative



  

Qt as Compositor

● Build a Wayland compositor using QtWayland

● But, layer manager?

– Needs support for the layer-manager extension

– Available as weston-ivi, but needs to be 
reimplemented through Qt



  

Qt for Services

● It is dead easy to write services using Qt

● Using the Qt D-Bus bindings

– Expose QObject instances

– We're working on doing the same from Franca IDL



  

The Pelagicore Stack

● We build on a GENIVI / Yocto base

● Adding
– Services, e.g. Application 

Manager, tracker-ivi, etc

– Configurations, e.g. audio 
routing rules, etc

– Application run-time 
environments

– Applications

● Mostly using Qt!



  

Application Manager

● Built using Qt

● The Wayland compositor

● Provides information for
– audio focus

– access arbitration of shared 
resources

– etc

● Launching applications in 
various run-time environments

● Installing and updating applications



  

Run-times

● Native code
– Can be run in a container

● QtQuick with access to the platform services

– Provide a common set of QML plugins for platform access

– Possible to pre-load the run-time to reduce start-up times

● HTML5 apps
– Using Qt WebKitWebEngine

– Vehicle data APIs are specified by GENIVI

– Platform access and toolkit bindings are needed



  

Applications

● Core set of applications
– Home screen

– App store

– Settings

– System wide search

– Browser

– Music player

– Video player

– Games

– Tuner

– Integrated streaming services, e.g. Spotify, Pandora, etc

– Navigation

– 3D vehicle status view

– etc



  

Automotive

● Conservative niche

– Legal requirements

– Standards compliance

– Development processes

● The value change and ownership is changing

– User expectations

– Cost of software

● Qt fits here

– Both in apps and system software



  

Qt and GENIVI

This is what is happening right now!



  

Thank you!
johan.thelin@pelagicore.com

www.pelagicore.com
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