
Practical QML

Burkhard Stubert
Chief Engineer, Embedded Use

www.embeddeduse.com

Contents

Ø Key Navigation

² Dynamic Language Change

² Themes

Key Navigation in Cars

Navigation clusters for controlling
in-vehicle infotainment systems

Key Navigation in Harvesters

Driver terminals for
Harvesters and tractors

Active Focus

² QML item needs active focus to receive key
events

² Only single item has active focus
² Property Item.activeFocus (read-only)

§  True if item has active focus
² Function Item.forceActiveFocus()

§  Forces item to have active focus
² Property Item.focus

§  Requests active focus when set to true

Focus Scopes

² Component FocusScope
§  Controls which child item gets active focus
§  Needed for introducing new components with

key handling
² When FocusScope receives active focus:

§  Last item to request focus gains active focus
§  When last item is FocusScope, active focus is

forwarded to FocusScope

Who gains active focus?

FocusScope A

FocusScope B2
focus: true

FocusScope B1

Rectangle C1
focus: true

Rectangle C2

Rectangle D1 Rectangle D1
focus: true

Recap: KeyNavigation
Attached Property

FlagButton {
 id: france
 KeyNavigation.backtab: spain
 KeyNavigation.tab: italy

Tab

Backtab

Crossing FocusScopes
with KeyNavigation

²  Enclose flag rows with FocusScope as
preliminary for FlagRow component

² What happens when crossing to other flag row?

focus: true

focus: true

Crossing FocusScopes
with KeyNavigation (2)

² KeyNavigation stops when crossing to other
FocusScope

² Reason: FocusScope changes focus instead of
activeFocus

Crossing Focus Scopes
with KeyNavigation (3)
² Solution:

FlagButton {
 id: italy
 KeyNavigation.backtab: france
 KeyNavigation.tab: uk
 Keys.onTabPressed: uk.forceActiveFocus()

² KeyNavigation not suited for components
§  Reason: top item of component always a

FocusScope
§  KeyNavigation forces monolithic code

Introducing a Generic
Cursor Component
² Forces guiding the solution

§  Write code for state machine, visual items, key
and mouse handling only once

§  Use only one way to move active focus:
forceActiveFocus()

§  Tab and backtab chains must take component
structures into account

Moving Active Focus in
Item Hierarchy

Cursor.france

FlagButton.france

Cursor.italy

FlagButton.italy

FlagRow.row0

Tab

FlagRow.row1

FlagButton.uk

Cursor.italy

Tab

²  KeyNavigation structure needs four properties:
tabUp/tabDown and backtabUp/backtabDow

Introducing New Attached
Property KeyNav
² KeyNav

§  tabUp : Item tabDown: Item
§  backtabUp: Item backtabDown: Item

² Attached properties ≈ multipe inheritance
§  Save us from declaring four properties in each

QML component
² Example use in middle FlagButton

FlagButton {
 id: flag1
 KeyNav.backtabUp: flag0.KeyNav.backtabDown
 KeyNav.tabUp: flag2.KeyNav.tabDown

}

Handling the Return Key
in Cursor
signal released()

Keys.onPressed: {
 if (event.key === Qt.Key_Return) {
 root.state = “pressed”
 event.accepted = true
 }

}

Keys.onReleased: {
 if (event.key === Qt.Key_Return) {
 root.state = “focused”
 root.released()
 event.accepted = true
 }

}

Make key and mouse
handling look the same for
clients

Move out of if-clause to
stop default key handling of
ListView (Up and Down)

Forward in Cursor instance
of FlagButton:
onReleased: root.release()

Also add “pressed” State to
states property

Key Navigation in
ListViews
² Forces guiding the solution

§  ListView item has no way to find out previous
and next item
•  Cannot use forceActiveFocus()

§  Changing currentIndex changes focus
•  Reimplement doTab() and doBacktab() for Cursor

§  Special cases for moving the active focus into the
ListView with Tab and Backtab
•  Implement doTab() and doBacktab() for ListView

Key Navigation in
ListViews (2)
² Extract doTab() and doBacktab() from

Cursor into ButtonCursor and
ListViewItemCursor

Cursor

ButtonCursor

doTab() and doBacktab()
use forceActiveFocus()
to move active focus

ListViewItemCursor

doTab() and doBacktab()
change currentIndex to
move active focus

Key Navigation in
ListViews (3)
² Every ListView inherits from BaseListView
² BaseListView provides tabbing and

backtabbing into list view

In BaseListView:

function doTab() {
 root.positionViewAtIndex(0,
 ListView.Beginning)
 root.currentIndex = 0
 root.forceActiveFocus()

}

Ensure that first item will
be visible

Request focus for first item

Forces active focus on
ListView, which passes it to
first item

Adding Mouse Handling
to Cursor Components
MouseArea {

 anchors.fill: parent
 onPressed: {
 root.doMousePress()
 root.state = “pressed”
 mouse.accepted = true
 }
 onReleased: {
 if (root.activeFocus) {
 root.state = “focused”
 root.released()
 }
 mouse.accepted = true
 }

}

Mouse press different for
buttons and list view items

Active focus on item
pressed, no dereferencing
of tab chain needed

Do not execute “release”
when item lost focus, e.g.,
when error dialog opened

Adding Mouse Handling to
Cursor Components (2)
In ButtonCursor:

function doMousePress() {
 root.forceActiveFocus()

}

In ListViewItemCursor:

function doMousePress() {
 delegateRoot.ListView.view.currentIndex = index
 delegateRoot.ListView.view.forceActiveFocus()

}

index provided by delegate
in ListView

For the case when the flag
row has active focus and
the user clicks in list view.
Avoids multiple cursors.

Contents

² Key Navigation

Ø Dynamic Language Change

² Themes

Dynamic Language Change

Dynamic Language
Change for QWidgets
² QCoreApplication::installTranslator() sends

LanguageChange event to application object
² QApplication::event() posts

LanguageChange event to every top-level
widget (QWidget*)

² QWidget::event() calls changeEvent() on the
widget and sends LanguageChange event to
all its children
§  changeEvent() is called on every widget in the

widget tree rooted at a top-level widget

Problems in QML

² Not a single QWidget in QML applications
§  Not even QQuickView derives from QWidget

² QApplication not used in QML applications
§  Note: QApplication derives from QGuiApplication

Need to rebuild LanguageChange
infrastructure in QML

Dynamic Language
Change in QML
² TranslationManager emits signal

languageChanged()
² Qt/C++ classes (e.g., list models) connect

signal with their retranslate() slot
² Every qsTr() call in QML must be reevaluated

when signal emitted

Changing the Language

² TranslationManager::setLanguage(language)
§  Load translation file for language in QTranslator
§  Remove old translator from application
§  Install new translator in application
§  emit languageChanged(language)

² Call setLanguage() before main view of
application is created

² Call setLanguage() when user changes
language

Retranslating Qt/C++
Models
² Equivalent to reimplementing changeEvent()

and calling retranslateUi()
²  In constructor of model class:

connect(TranslationManager::instance(),  
 SIGNAL(languageChanged(QString)),  
 this,  
 SLOT(retranslate(QString)));

Retranslating Qt/C++
Models (2)
void BiggestCitiesModel::retranslate(const QString &language)
{

 emit titleChange();
 CityDatabase::instance()->retranslate(language);
 emit dataChanged(index(0), index(m_cities.count() - 1));

}

Notify QML code that title
property has changed

QML calls title(), which
returns tr(rawTitle())

Notify QML ListView that
all its items have changed
and need reloading Delegate retranslation, as

model is “view” on
database

Retranslating Qt/C++
Models (3)
const char *CityDatabase::m_strings[][2] = {

 { QT_TR_NOOP(“Munich”), QT_TR_NOOP(“Bavaria”) }, …

void CityDatabase::retranslate(const QString &language) {

 if (m_currentLanguage != language) {
 for (int i = 0; i < m_cities.count(); ++i) {
 m_cities[i]->setName(tr(m_strings[i][0]));
 …
 }
 m_currentLanguage = language;
 }

}
Guard against multiple
“views” (e.g., German
cities, British cities)
requesting retranslation
to same language

Reset visible members
(e.g., city name, state)
with new translation of
raw string

Reevaluating qsTr on
Language Change

² Use Property Binding:
§  Whenever g_tr.languageChanged changes, text

must be reevaluated:
§  qsTr() is called and returns translation for new

language

Text {
 text: qsTr(“City:”) + g_tr.languageChanged
 …

}

Reevaluating qsTr on
Language Change (2)
In TranslationManager:

Q_PROPERTY(QString languageChanged
 READ emptyString
 NOTIFY languageChanged)

QString emptyString() const {
 return “”;

}

Emitting this signal forces QML
to call emptyString(), the READ
method of languageChanged
property

Empty string can be appended
to translated string without
changing anything

Reevaluating qsTr on
Language Change (3)
On instance of QQuickView:

view->rootContext()->setContextProperty(

 “g_tr”, TranslationManager::instance());

Makes pointer to
TranslationManager globally
available in QML under name g_tr

Contents

² Key Navigation

² Dynamic Language Change

Ø Themes

Dynamic Theme Change

Theming QML Code

Rectangle {
 color: index % 2 === 0 ?
 “#1E90FF” :
 “#00BFFF”

 Row {
 Text {
 text: city.name
 color: “#191970”

Rectangle {
 color: index % 2 === 0 ?
 g_theme.listViewItem.
 backgroundColor :
 g_theme.listViewItem.
 backgroundColorAlt

 Row {
 Text {
 text: city.name
 color: g_theme.listViewItem.
 textColor

Unthemed Themed

Implementing the Themes

QtObject {
 property QtObject listViewItem : QtObject {
 property color backgroundColor: “#1E90FF”
 property color backgroundColorAlt: “#00BFFF”
 property color textColor: “#191970”
 }

QtObject {
 property QtObject listViewItem : QtObject {
 property color backgroundColor: “#A5A5A5”
 property color backgroundColorAlt: “#818181”
 property color textColor: “#1E1E1E”
 }

Changing Themes
In top-level QML item (main.qml)

property alias g_theme: loader.item
Loader { id: loader }

Component.onCompleted: {
 loader.source = Qt.resolveUrl(“BlueTheme.qml”)

}

Connections {
 target: g_viewer
 onThemeChanged: {
 loader.source = Qt.resolvedUrl(theme + “Theme.qml”)
 }

}

QQuickView forwards signal
themeChanged(QString theme)

Global variable accessible from
everywhere in QML

Set theme on start-up

The End

Thank you!

