
Analysing & Solving Qt UI
Performance Problems

On Embedded Hardware

Phil Brumby,

Mentor Graphics



Agenda

● Introduction

● Performance Matters!

● Typical performance problems

● Methods of solving performance problems

● Examples of using trace analysis

● Conclusion/Questions



Introduction



About Me

● Phil Brumby, Senior Technical Marketing Engineer

● Former software engineer in user interface technology
and mobile gaming space

● Specialised in Graphics & UI at Mentor Embedded
– Working closely with our embedded customers & their needs

– Across OS’s including Nucleus (Mentors own RTOS), but also
Embedded Linux & Android

● Focused and valued approach on this topic in that I
come at it from the end users perspective!



Mentor Embedded

www.mentor.com/embedded

United States

Canada

United Kingdom
Ireland

Netherlands
Germany

Denmark

Sweden
Finland

Poland

Armenia

Russia
China

Japan

Korea
Taiwan

Australia

Singapore

India
Pakistan

Israel
Egypt

Hungary

ItalyAustria
Switzerland

Spain

France

Brazil

400+ engineers

50+ engineers in lead OSS community roles

10,000+ accepted OSS changes

Software deployed in over 3 Billion devices

Over 20,000 users of embedded tools



Mentor Embedded & Qt

● 20+ years of experience working in the embedded
market, enabling customers in automotive, industrial,
medical devices, and consumer electronics
– Commercially supported and customizable Linux®

– For real-time control systems developers can take advantage
Nucleus® RTOS.

● Mentor has been working to enable the use of Qt with
its own portfolio of embedded software & tools:
– Integration of Qt run-time on our own RTOS Nucleus

– Port covers Qt Core & GUI for QWidget solutions

– Genivi compliant Linux Automotive Technology Platform (ATP)



Performance Matters!



Why does UI performance
matter to Mentor Embedded?

● “No matter how good your underlying system is,
the users will only remember your user interface.
Fail there and you will fail, period.” -- Tristan Louis

● For Mentor, after enabling a
customer with UI technology,
OS, Middleware and Dev tools,
we have a vested interest in
ensuring a quality product is
produced!



Why are performance
problems an issue today?

● Expectations from the ‘Smart
Phone’ experience has raised
consumer expectations,
significantly raising the
performance bar for all
embedded devices.

● Despite advancements in
hardware capability embedded UI
development must still pay
careful attention to platform
capabilities!



Typical Performance Problems



Typical Performance Problems

● Responsiveness
– How quickly a UI responds to an

input (e.g. a touch event)
– Avoiding UIs which are perceived

as “laggy”
● Animation smoothness

– Typically measured in frames per
second

● Start-up time
– Affected by OS, UI framework,

application processing, resource
loading and graphics computation



Example – Bad user
interaction experience

In Vehicle Infotainment UI, QML Design, Linux, iMX6 board



Performance Metrics

● To get to the bottom of performance issues, we must
understand system metrics for measuring performance

● We can then use them to tell the story of just what is
happening on the hardware at any given time
– Execution profile – LISRS, HISRS, Tasks, Events
– CPU – State, utilisation, multi core access
– Memory – Pools, usage, load
– File system activity

● These should be coupled with computational user
defined metrics
– Frame rate (FPS), pixel load, runtime data requests, % screen redraw,

start up time…



A QWidget or QML solution?

● From engagements experienced in the embedded
space significant user cases exist for deployment of
both Qt solutions.

● We still see the need to deploy QWidget UIs
– Memory considerations - smaller footprint

– No GPU

– Some markets still require static, traditional 2D buttons
and controls style UIs - Medical

● Ultimately the best performance analysis tools
should cover both!



Methods/Tools to Analyse Performance



Printf

● “gdb didn't help, so I'll add some printfs.”
● Usage:

– printf(“REDRAW@%ld, foo=%x\n”, gettimeofday(stuff), foo);

● Pros
– Simple & easy; works (almost) everywhere

● Cons
– Low performance, inefficient
– Add; rebuild; re-run; tweak; rebuild; re-run; remove; rebuild; re-run; …
– Post-processing the results

● Right tool for displaying output; wrong tool for this job
REDRAW@87234564, foo=a
REDRAW@87234456, foo=3
!!! media file '/usr/share/myapp/media/bar.png' changed; reloading !!!
REDRAW@87234576, foo=8
click_down 27,432
REDRAW@87234576, foo=8
click_up
redrawRegion @87234698: 0,100-230x80



Statistical Profiling

● Determine which code is typically the greatest user of CPU or cache.
● Usage:

– perf record mytestcase; examine table for highest consumers
● Pros

– High performance
● Cons

– Focused on utilization of hardware resources
– Static table aggregating all results; can't narrow focus to problems
– Only helps to visualize repeated patterns

● May be right tool for throughput problems; wrong tool for other jobs.
12.95% ls ls [.] 0x00004a3e
7.18% ls libc-2.17.so [.] 0x0007e757
6.03% ls libc-2.17.so [.] __strcoll_l
3.37% ls [kernel.kallsyms] [k] __ticket_spin_unlock
2.63% ls [kernel.kallsyms] [k] __ticket_spin_lock
2.22% ls [kernel.kallsyms] [k] n_tty_write
1.94% ls [kernel.kallsyms] [k] _raw_spin_unlock_irqrestore
1.69% ls [kernel.kallsyms] [k] memset
...



Tracing

● Like printf but lower level and higher-performance
● Usage:

– tracepoint(REDRAW, foo);
● Pros

– High performance
– Correlates activity at many layers

● Cons
– Post-processing the results

[05:19:37.099741586] sys_geteuid: { cpu_id = 4 }, { }
[05:19:37.099742180] exit_syscall: { cpu_id = 4 }, { ret = 0 }
[05:19:37.099743115] sys_pipe: { cpu_id = 4 }, { fildes = 0x7FBA4D454AD0 }
[05:19:37.099750095] exit_syscall: { cpu_id = 4 }, { ret = 0 }
[05:19:37.099751030] sys_mmap: { cpu_id = 4 }, { addr = 0x0, len = 10485760, prot = 3, flags = 131362,

fd = -1,
offset = 0 }
[05:19:37.099755483] exit_syscall: { cpu_id = 4 }, { ret = 140438029725696 }
[05:19:37.099960298] timer_init: { cpu_id = 7 }, { timer = 18446612138716355504 }
[05:19:37.099961822] timer_start: { cpu_id = 7 }, { timer = 18446612138716355504, function =

18446744071579164944,
expires = 4311019744, now = 4311009744 }



Tracing Viewing

● We have a haystack of data now, but where is the needle?
● Pros

– Can show the events graphically
– Basic features like search & filter

● Cons
– Depend on users to find the patterns
– Fixed or limited data sets, no custom application level viewing

● Need a more flexible means
of analysis to calculate and
display to the user higher-
level patterns of data



QML Profiler

● Purpose-optimized performance tool for QML.

● Usage:
– “I'm using QML and I think my problem is strictly within

my application.”

● Pros
– Deep QML comprehension

● Cons
– No system-wide interactions

– No QWidget coverage



Trace Analysis

● Task-centric analysis to
calculate and display a
system wide and more user
defined visual analysis of
the system

● Live demo…



Examples of Using Trace Analysis



Use Case 1 – Bad user
interaction experience

In Vehicle Infotainment UI, QML Design, Linux, iMX6 board



Use Case 2 – Intermittent
framerate issues

SEP 2.0 Washing Machine UI, Qt Widget, Nucleus RTOS, Qemu



Conclusions



Conclusion

● There are lots of tools out there. Using the right one
for each job makes all the difference.

● Tracing is a good approach to many system wide
performance problems, but needs a tool to process &
help visualise it all.

● Sourcery Analyzer can perform trace analysis at the
OS layer, the Qt layer, and even the application layer.

● http://go.mentor.com/sourceryanalyzer

● Questions?


