Developer
Qt BEVS

2013

Analysing & Solving Qt Ul
Performance Problems
On Embedded Hardware

Phil Brumby,
Mentor Graphics

' Developer
Qt BEVS

2013

. Introduction

. Performance Matters!

Typical performance problems

. Methods of solving performance problems

Examples of using trace analysis

Conclusion/Questions

Developer
Qt BEVS

2O

Introduction

Phil Brumby, Senior Technical Marketing Engineer

Former software engineer in user interface technology
and mobile gaming space

Specialised in Graphics & Ul at Mentor Embedded

— Working closely with our embedded customers & their needs

— Across OS’s including Nucleus (Mentors own RTOS), but also
Embedded Linux & Android

Focused and valued approach on this topic in that |
come at it from the end users perspective!

Developer

United Kingdom Sweden
Ireland Germany Finland
Denmark -
5 France Poland Russia
e dnopendHEEEEEEE e 3333 P 8350 China
United States i i ' S il FE Japan
- R saee «+ ARSI NRREREERREES SRR ERERE Korea
““EE... - . &2 Taiwan
Toon I Singapore
Brazil % =
Australia
Spain Pakistan
Switzerland Egypt India i .3555:
Austria Italy Israel

400+ '
ENBINEErs Software deployed in over 3 Billion devices

50+ engineers in lead OSS community roles Over 20,000 users of embedded tools

10,000+ accepted OSS changes

www.mentor.com/embedded

t Developer

Ot -
RO 50713

. 20+ years of experience working in the embedded
market, enabling customers in automotive, industrial,
medical devices, and consumer electronics
— Commercially supported and customizable Linux®

— For real-time control systems developers can take advantage
Nucleus® RTOS.

. Mentor has been working to enable the use of Qt with
its own portfolio of embedded software & tools:

— Integration of Qt run-time on our own RTOS Nucleus
— Port covers Qt Core & GUI for QWidget solutions

— Genivi compliant Linux Automotive Technology Platform (ATP)

Developer
Qt BEVS

2O

Performance Matters!

PR Developer
¥ Days

“No matter how good your underlying system is,
the users will only remember your user interface.
Fail there and you will fail, period.” -- Tristan Louis

. For Mentor, after enabling a
customer with Ul technology,
OS, Middleware and Dev tools,
we have a vested interest in
ensuring a quality product is
produced!

PR Developer

W Days

. Expectations from the ‘Smart
Phone’ experience has raised
consumer expectations,
significantly raising the
performance bar for all
embedded devices.

. Despite advancements in
hardware capability embedded Ul
development must still pay
careful attention to platform
capabilities!

Typical Performance Problems

. Responsiveness

— How quickly a Ul responds to an
input (e.g. a touch event)

— Avoiding Uls which are perceived
aS lllaggy”

. Animation smoothness

— Typically measured in frames per
second

. Start-up time

— Affected by OS, Ul framework,
application processing, resource
loading and graphics computation

Developer
BEVS
QS

VIDEOS

=

CAR CLIMATE SETTINGS

TITANUIM - DAVID GUETTAFT.SA T Y]

o " Develop@r

W Days

. To get to the bottom of performance issues, we must
understand system metrics for measuring performance

. We can then use them to tell the story of just what is

happening on the hardware at any given time

— Execution profile — LISRS, HISRS, Tasks, Events
— CPU - State, utilisation, multi core access

-~ Memory — Pools, usage, load

— File system activity

. These should be coupled with computational user
defined metrics

— Frame rate (FPS), pixel load, runtime data requests, % screen redraw,
start up time...

t Developer

0Ot o-
RS 00713

. From engagements experienced in the embedded
space significant user cases exist for deployment of

both Qt solutions.
. We still see the need to deploy QWidget Uls

— Memory considerations - smaller footprint

— No GPU

— Some markets still require static, traditional 2D buttons
and controls style Uls - Medical

. Ultimately the best performance analysis tools
should cover both!

Developer
Qt BEVS

2O

Methods/Tools to Analyse Performance

. “gdb didn't help, so I'll add some printfs.”

. Usage:

- printf (““REDRAW@%Id, foo=%\n’’, getti neofday(stuff), foo);
. Pros

— Simple & easy; works (almost) everywhere
. Cons

-~ Low performance, inefficient
— Add; rebuild; re-run; tweak; rebuild; re-run; remove; rebuild; re-run; ...
— Post-processing the results

. Right tool for displaying output; wrong tool for this job

REDRAW@B 7234564, foo=a

REDRAW@B 7234456, foo0=3

I''! media file '/usr/share/nyapp/ nedi a/ bar. png’ changed; reloading !'!!
REDRAW@B 7234576, foo=8

click _down 27,432

REDRAW@B 7234576, foo0=8

click _up

redr awRegi on @7234698: 0, 100-230x80

Q Developer

. Determine which code is typically the greatest user of CPU or cache.

. Usage:

— perf record mytestcase; examine table for highest consumers
. Pros

— High performance
. Cons

— Focused on utilization of hardware resources
— Static table aggregating all results; can't narrow focus to problems
— Only helps to visualize repeated patterns

. May be right tool for throughput problems; wrong tool for other jobs.

12.95%1s Is [.] 0x00004a3e

7.18%I|s libc-2.17.s0 [.] 0x0007e757

03%Ils libc-2.17.s0 [.] __strcoll |

37%1|s [kernel.kallsynms] [k] __ticket _spin_unl ock

63% |s [kernel.kallsynms] [k] _ ticket _spin_lock

22% 1s [kernel .kallsyns] [k] n_tty wite

94% | s [kernel . kallsyns] [k] _raw spin_unlock irqgrestore
69% | s [kernel.kallsyns] [k] nenset

RN L O

' Developer
Qt BEVS

2013

Like printf but lower level and higher-performance
Usage:

— tracepoint(REDRAW, foo);

. Pros

— High performance
— Correlates activity at many layers

Cons
— Post-processing the results

[05:19: 37.099741586] sys geteuid: { cpu_.id =41}, {}

[05:19: 37.099742180] exit_syscall: { cpu_id =41}, { ret =0}

[05:19:37.099743115] sys_pipe: { cpu_id =4}, { fildes = Ox7FBA4D454AD0 }

[05:19: 37.099750095] exit_syscall: { cpu_id =41}, { ret =0}

[05:19:37.099751030] sys_mmap: { cpu_id =4}, { addr = 0x0, len = 10485760, prot = 3, flags = 131362,
fd =-1,

offset = 0 }

[05:19: 37.099755483] exit _syscall: { cpu.id =41}, { ret 140438029725696 }

[05:19:37.099960298] tinmer_init: { cpu_id =71}, { timer 18446612138716355504 }

[05:19: 37.099961822] timer _start: { cpu.id =71}, { timer = 18446612138716355504, function =
18446744071579164944,

expires = 4311019744, now = 4311009744 }

. We have a haystack of data now, but where is the needle?

Pros

— Can show the events graphically
— Basic features like search & filter

Cons

E ekt LRE =D

08:40:25.068

fou3 TN T THEITET
s

— Depend on users to find the patterns
— Fixed or limited data sets, no custom application level viewing

Need a more flexible means
of analysis to calculate and
display to the user higher-
level patterns of data

4.0M]
3 20M—
g 00 -
= = T T T T T

- I - I 4 I Y | ' I : I > I
3.5048101k 3.5048103k 3.5048105k 3.5048107k

Process and Thread State

Page Fault Rate

7.ONA

ney (Hz)

Time (s)

—
3.504

call... MR | (home/root/copier

/home/root/copiar

/home/root/copiar

| Page Fault Rate

Developer
Qt BEVS

2013

Purpose-optimized performance tool for QML.

. Usage:
— “I'm using QML and | think my problem is strictly within
my application.”
AL o
— Deep QML comprehension | BB B mmiEe s ’
——
. Cons -~
ll
— No system-wide interactions . |
— No QWidget coverage e ——

Timeline | Events | JavaScript

Task-centric analysis to
calculate and display a
system wide and more user
defined visual analysis of
the system

Frequency (Hz)

Process and Thread 5State
B | fhomefrootfcopier

fhome/root/copier

Jhomejfroot/copier

Page Fault Rate

o | Page Fault Rate
4.0M-
2.0M—
oonNg
r : T T T T T T T T T
: | i | s | 3 | : [2 | i | | :
35048101k 35048103k 3.5048105k 3.5048107k 3.504

Time (s)

e

'
n
1
-
-
-y
T
and
"
E
& 1am+
E o E]
iw
2
£
R
s
Nuclsus CPU Utiisstion Profils
nog —
00 . i | Tnsny
00
w0a
Z
§ son
1 ol
QTR
2]
fing l i |
wad Y I
0] L I Ll
a0a
m
a4
i]
xad
5
s0a
sad
oad
L | —_— T T T T T T T T T
= S = e

. Live demo...

Examples of Using Trace Analysis

Developer
BEVS
QS

VIDEOS

=

CAR CLIMATE SETTINGS

TITANUIM - DAVID GUETTAFT.SA T Y]

My Wash

Normal

Heavy

Hand Wash

Delicates

Ultra Whites

MEDIUM

MEDIUM

TYPICAL

MEDIUM

‘Instant

o Developer
I Days
Y 2013

- Wash Time

77 Mins

'I.“

Wash

' g,
SMART

menior

Developer
Qt BEVS

2O

Conclusions

P Developer

W Days

. There are lots of tools out there. Using the right one
for each job makes all the difference.

. Tracing is a good approach to many system wide

performance problems, but needs a tool to process &
help visualise it all.

. Sourcery Analyzer can perform trace analysis at the
OS layer, the Qt layer, and even the application layer.

. http://go.mentor.com/sourceryanalyzer

. Questions?

