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Introduction



About Me

● Phil Brumby, Senior Technical Marketing Engineer

● Former software engineer in user interface technology
and mobile gaming space

● Specialised in Graphics & UI at Mentor Embedded
– Working closely with our embedded customers & their needs

– Across OS’s including Nucleus (Mentors own RTOS), but also
Embedded Linux & Android

● Focused and valued approach on this topic in that I
come at it from the end users perspective!
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Mentor Embedded & Qt

● 20+ years of experience working in the embedded
market, enabling customers in automotive, industrial,
medical devices, and consumer electronics
– Commercially supported and customizable Linux®

– For real-time control systems developers can take advantage
Nucleus® RTOS.

● Mentor has been working to enable the use of Qt with
its own portfolio of embedded software & tools:
– Integration of Qt run-time on our own RTOS Nucleus

– Port covers Qt Core & GUI for QWidget solutions

– Genivi compliant Linux Automotive Technology Platform (ATP)



Performance Matters!



Why does UI performance
matter to Mentor Embedded?

● “No matter how good your underlying system is,
the users will only remember your user interface.
Fail there and you will fail, period.” -- Tristan Louis

● For Mentor, after enabling a
customer with UI technology,
OS, Middleware and Dev tools,
we have a vested interest in
ensuring a quality product is
produced!



Why are performance
problems an issue today?

● Expectations from the ‘Smart
Phone’ experience has raised
consumer expectations,
significantly raising the
performance bar for all
embedded devices.

● Despite advancements in
hardware capability embedded UI
development must still pay
careful attention to platform
capabilities!



Typical Performance Problems



Typical Performance Problems

● Responsiveness
– How quickly a UI responds to an

input (e.g. a touch event)
– Avoiding UIs which are perceived

as “laggy”
● Animation smoothness

– Typically measured in frames per
second

● Start-up time
– Affected by OS, UI framework,

application processing, resource
loading and graphics computation



Example – Bad user
interaction experience

In Vehicle Infotainment UI, QML Design, Linux, iMX6 board



Performance Metrics

● To get to the bottom of performance issues, we must
understand system metrics for measuring performance

● We can then use them to tell the story of just what is
happening on the hardware at any given time
– Execution profile – LISRS, HISRS, Tasks, Events
– CPU – State, utilisation, multi core access
– Memory – Pools, usage, load
– File system activity

● These should be coupled with computational user
defined metrics
– Frame rate (FPS), pixel load, runtime data requests, % screen redraw,

start up time…



A QWidget or QML solution?

● From engagements experienced in the embedded
space significant user cases exist for deployment of
both Qt solutions.

● We still see the need to deploy QWidget UIs
– Memory considerations - smaller footprint

– No GPU

– Some markets still require static, traditional 2D buttons
and controls style UIs - Medical

● Ultimately the best performance analysis tools
should cover both!



Methods/Tools to Analyse Performance



Printf

● “gdb didn't help, so I'll add some printfs.”
● Usage:

– printf(“REDRAW@%ld, foo=%x\n”, gettimeofday(stuff), foo);

● Pros
– Simple & easy; works (almost) everywhere

● Cons
– Low performance, inefficient
– Add; rebuild; re-run; tweak; rebuild; re-run; remove; rebuild; re-run; …
– Post-processing the results

● Right tool for displaying output; wrong tool for this job
REDRAW@87234564, foo=a
REDRAW@87234456, foo=3
!!! media file '/usr/share/myapp/media/bar.png' changed; reloading !!!
REDRAW@87234576, foo=8
click_down 27,432
REDRAW@87234576, foo=8
click_up
redrawRegion @87234698: 0,100-230x80



Statistical Profiling

● Determine which code is typically the greatest user of CPU or cache.
● Usage:

– perf record mytestcase; examine table for highest consumers
● Pros

– High performance
● Cons

– Focused on utilization of hardware resources
– Static table aggregating all results; can't narrow focus to problems
– Only helps to visualize repeated patterns

● May be right tool for throughput problems; wrong tool for other jobs.
12.95% ls ls [.] 0x00004a3e
7.18% ls libc-2.17.so [.] 0x0007e757
6.03% ls libc-2.17.so [.] __strcoll_l
3.37% ls [kernel.kallsyms] [k] __ticket_spin_unlock
2.63% ls [kernel.kallsyms] [k] __ticket_spin_lock
2.22% ls [kernel.kallsyms] [k] n_tty_write
1.94% ls [kernel.kallsyms] [k] _raw_spin_unlock_irqrestore
1.69% ls [kernel.kallsyms] [k] memset
...



Tracing

● Like printf but lower level and higher-performance
● Usage:

– tracepoint(REDRAW, foo);
● Pros

– High performance
– Correlates activity at many layers

● Cons
– Post-processing the results

[05:19:37.099741586] sys_geteuid: { cpu_id = 4 }, { }
[05:19:37.099742180] exit_syscall: { cpu_id = 4 }, { ret = 0 }
[05:19:37.099743115] sys_pipe: { cpu_id = 4 }, { fildes = 0x7FBA4D454AD0 }
[05:19:37.099750095] exit_syscall: { cpu_id = 4 }, { ret = 0 }
[05:19:37.099751030] sys_mmap: { cpu_id = 4 }, { addr = 0x0, len = 10485760, prot = 3, flags = 131362,

fd = -1,
offset = 0 }
[05:19:37.099755483] exit_syscall: { cpu_id = 4 }, { ret = 140438029725696 }
[05:19:37.099960298] timer_init: { cpu_id = 7 }, { timer = 18446612138716355504 }
[05:19:37.099961822] timer_start: { cpu_id = 7 }, { timer = 18446612138716355504, function =

18446744071579164944,
expires = 4311019744, now = 4311009744 }



Tracing Viewing

● We have a haystack of data now, but where is the needle?
● Pros

– Can show the events graphically
– Basic features like search & filter

● Cons
– Depend on users to find the patterns
– Fixed or limited data sets, no custom application level viewing

● Need a more flexible means
of analysis to calculate and
display to the user higher-
level patterns of data



QML Profiler

● Purpose-optimized performance tool for QML.

● Usage:
– “I'm using QML and I think my problem is strictly within

my application.”

● Pros
– Deep QML comprehension

● Cons
– No system-wide interactions

– No QWidget coverage



Trace Analysis

● Task-centric analysis to
calculate and display a
system wide and more user
defined visual analysis of
the system

● Live demo…



Examples of Using Trace Analysis



Use Case 1 – Bad user
interaction experience

In Vehicle Infotainment UI, QML Design, Linux, iMX6 board



Use Case 2 – Intermittent
framerate issues

SEP 2.0 Washing Machine UI, Qt Widget, Nucleus RTOS, Qemu



Conclusions



Conclusion

● There are lots of tools out there. Using the right one
for each job makes all the difference.

● Tracing is a good approach to many system wide
performance problems, but needs a tool to process &
help visualise it all.

● Sourcery Analyzer can perform trace analysis at the
OS layer, the Qt layer, and even the application layer.

● http://go.mentor.com/sourceryanalyzer

● Questions?


